L-GALAXIES 2020: The evolution of radial metallicity profiles and global metallicities in disc galaxies

We present a modified version of the L-galaxies2020 semi-analytic model of galaxy evolution, which includes significantly increased direct metal enrichment of the circumgalactic medium (CGM) by supernovae (SNe). These more metal-rich outflows do not require increased mass-loading factors, in contrast to some other galaxy evolution models. This modified L-galaxies2020 model is able to simultaneously reproduce the gas-phase metallicity ($Z_{\rm {g}}$) and stellar metallicity (Z*) radial profiles observed in nearby disc galaxies by MaNGA and MUSE, as well as the observed mass – metallicity relations for gas and stars at z = 0 and their evolution back to z ∼ 2−3. A direct CGM enrichment fraction of ∼90 per cent for SNe-II is preferred. We find that massive disc galaxies have slightly flatter $Z_{\rm {g}}$ profiles than their lower-mass counterparts in L-galaxies2020, due to more efficient enrichment of their outskirts via inside-out growth and metal-rich accretion. Such a weak, positive correlation between stellar mass and $Z_{\rm {g}}$ profile slope is also seen in our MaNGA-DR15 sample of 571 star-forming disc galaxies, although below log10(M*/M⊙) ∼ 10.0 this observational result is strongly dependent on the metallicity diagnostic and morphological selection chosen. In addition, a lowered maximum SN-II progenitor mass of $25\, {\rm M}_{\odot }$, reflecting recent theoretical and observational estimates, can also provide a good match to observed $Z_{\rm {g}}$ and Z* profiles at z = 0 in L-galaxies2020. However, this model version fails to reproduce an evolution in $Z_{\rm {g}}$ at fixed mass over cosmic time, or the magnesium abundances observed in the intracluster medium (ICM).

[1]  J. Newman,et al.  SDSS-IV MaNGA: galaxy gas-phase metallicity gradients vary across the mass–size plane , 2020, Monthly Notices of the Royal Astronomical Society.

[2]  A. M. Swinbank,et al.  The Evolution of Gas-Phase Metallicity and Resolved Abundances in Star-forming Galaxies at z ≈ 0.6 – 1.8 , 2020, Monthly Notices of the Royal Astronomical Society.

[3]  J. Howk,et al.  The Cosmic Baryon and Metal Cycles , 2020, Annual Review of Astronomy and Astrophysics.

[4]  V. Springel,et al.  LYRA I: Simulating the multi-phase ISM of a dwarf galaxy with variable energy supernovae from individual stars , 2020, 2010.07311.

[5]  R. Davé,et al.  The MOSDEF Survey: The Evolution of the Mass-Metallicity Relation from $z=0$ to $z\sim3.3$. , 2020 .

[6]  R. Klessen,et al.  Measuring the mixing scale of the ISM within nearby spiral galaxies , 2020, Monthly Notices of the Royal Astronomical Society.

[7]  C. Kobayashi,et al.  The Origin of Elements from Carbon to Uranium , 2020, The Astrophysical Journal.

[8]  F. Bresolin,et al.  Bar effect on gas-phase abundance gradients – II. Luminosity-dependent flattening , 2020, Monthly Notices of the Royal Astronomical Society.

[9]  F. Bresolin,et al.  Bar effect on gas-phase abundance gradients. I. Data sample and chemical abundances , 2020, 2007.12289.

[10]  L. Kewley,et al.  Gas-phase metallicity gradients of TNG50 star-forming galaxies , 2020, 2007.10993.

[11]  M. Peimbert,et al.  THE ADF AND THE t2 FORMALISM IN H II REGIONS BASED ON THE UPPER MASS LIMIT OF THE IMF FOR THE MW , 2020, 2006.07335.

[12]  L. Kewley,et al.  Quantifying the effects of spatial resolution and noise on galaxy metallicity gradients , 2020, Monthly Notices of the Royal Astronomical Society.

[13]  M. Bershady,et al.  SDSS IV MaNGA: Metallicity and ionisation parameter in local star-forming galaxies from Bayesian fitting to photoionisation models , 2020, Astronomy & Astrophysics.

[14]  G. Kauffmann,et al.  L-GALAXIES 2020: Spatially resolved cold gas phases, star formation, and chemical enrichment in galactic discs , 2020, 2003.05944.

[15]  N. Werner,et al.  Hot Atmospheres of Galaxies, Groups, and Clusters of Galaxies , 2020, Reviews in Frontiers of Modern Astrophysics.

[16]  J. Comparat,et al.  Stellar population properties of individual massive early-type galaxies at 1.4 < z < 2 , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  T. Treu,et al.  A Census of Sub-kiloparsec Resolution Metallicity Gradients in Star-forming Galaxies at Cosmic Noon from HST Slitless Spectroscopy , 2019, The Astrophysical Journal.

[18]  Rebecca J. Williams,et al.  The KLEVER Survey: spatially resolved metallicity maps and gradients in a sample of 1.2 < z < 2.5 lensed galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  M. Bershady,et al.  Milky Way analogues in MaNGA: multiparameter homogeneity and comparison to the Milky Way , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  R. Bower,et al.  Galactic outflow rates in the EAGLE simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  J. Schaye,et al.  The effect of gas accretion on the radial gas metallicity profile of simulated galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  F. Mannucci,et al.  The mass–metallicity and the fundamental metallicity relation revisited on a fully Te-based abundance scale for galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[23]  T. Treu,et al.  Evolution of the Stellar Mass–Metallicity Relation. II. Constraints on Galactic Outflows from the Mg Abundances of Quiescent Galaxies , 2019, The Astrophysical Journal.

[24]  G. Bryan,et al.  Simulating Metal Mixing of Both Common and Rare Enrichment Sources in a Low-mass Dwarf Galaxy , 2019, The Astrophysical Journal.

[25]  G. Kauffmann,et al.  Gas accretion and galactic fountain flows in the Auriga cosmological simulations: angular momentum and metal redistribution , 2019, Monthly Notices of the Royal Astronomical Society.

[26]  Daniel Thomas,et al.  SDSS-IV MaNGA: environmental dependence of gas metallicity gradients in local star-forming galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  P. Schady,et al.  The 50–100 pc scale parent stellar populations of Type II supernovae and limitations of single star evolution models , 2019, Monthly Notices of the Royal Astronomical Society.

[28]  F. Bresolin Metallicity gradients in small and nearby spiral galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[29]  G. Barro,et al.  Stellar Metallicities and Elemental Abundance Ratios of z ∼ 1.4 Massive Quiescent Galaxies , 2019, The Astrophysical Journal.

[30]  L. Kewley,et al.  The effects of diffuse ionized gas and spatial resolution on metallicity gradients: TYPHOON two-dimensional spectrophotometry of M83 , 2019, Monthly Notices of the Royal Astronomical Society.

[31]  E. Grebel,et al.  Relations between abundance characteristics and rotation velocity for star-forming MaNGA galaxies , 2019 .

[32]  E.K.Grebel,et al.  Relations between abundance characteristics and rotation velocity for star-forming MaNGA galaxies , 2019, Astronomy & Astrophysics.

[33]  D. Narayanan,et al.  simba: Cosmological simulations with black hole growth and feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[34]  J. Brinchmann,et al.  The MUSE Atlas of Disks (MAD): resolving star formation rates and gas metallicities on <100 pc scales† , 2019, Monthly Notices of the Royal Astronomical Society.

[35]  J. Trump,et al.  CLEAR. I. Ages and Metallicities of Quiescent Galaxies at 1.0 < z < 1.8 Derived from Deep Hubble Space Telescope Grism Data , 2018, The Astrophysical Journal.

[36]  P. Schady,et al.  Present-day mass-metallicity relation for galaxies using a new electron temperature method , 2019, Astronomy & Astrophysics.

[37]  M. Bershady,et al.  The Data Analysis Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey: Overview , 2019, The Astronomical Journal.

[38]  Daniel Thomas,et al.  The Data Analysis Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey: Emission-line Modeling , 2019, The Astronomical Journal.

[39]  B. Oppenheimer,et al.  The COS CGM Compendium. II. Metallicities of the Partial and Lyman Limit Systems at z ≲ 1 , 2018, The Astrophysical Journal.

[40]  F. Mannucci,et al.  De re metallica: the cosmic chemical evolution of galaxies , 2018, The Astronomy and Astrophysics Review.

[41]  C. Maraston,et al.  Modelling the mass-metallicity relation of star-forming galaxies from z ∼ 3.5 to z ∼ 0 , 2018, Monthly Notices of the Royal Astronomical Society.

[42]  G. Bryan,et al.  Metal Mixing and Ejection in Dwarf Galaxies Are Dependent on Nucleosynthetic Source , 2018, The Astrophysical Journal.

[43]  L. Kewley,et al.  The SAMI Galaxy Survey: Spatially resolved metallicity and ionization mapping , 2018, Monthly Notices of the Royal Astronomical Society.

[44]  J. Kaastra,et al.  Solar chemical composition in the hot gas of cool-core ellipticals, groups, and clusters of galaxies , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[45]  R. Bower,et al.  The oxygen abundance gradients in the gas discs of galaxies in the EAGLE simulation , 2018, Monthly Notices of the Royal Astronomical Society.

[46]  T Tamura,et al.  Constraints on the chemical enrichment history of the Perseus Cluster of galaxies from high-resolution X-ray spectroscopy , 2018, Monthly Notices of the Royal Astronomical Society.

[47]  J. Brinchmann,et al.  First gas-phase metallicity gradients of 0.1 ∼ < z ∼ < 0.8 galaxies with MUSE , 2018, 1805.08131.

[48]  A. Cimatti,et al.  FIGS: spectral fitting constraints on the star formation history of massive galaxies since the cosmic noon , 2018, Monthly Notices of the Royal Astronomical Society.

[49]  J. Kaastra,et al.  Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies , 2018, 1803.06296.

[50]  D. Goddard,et al.  SDSS-IV MaNGA: Modelling the Metallicity Gradients of Gas and Stars – Radially Dependent Metal Outflow Versus IMF , 2018, 1802.06793.

[51]  R. Giovanelli,et al.  The ALFALFA H I mass function: a dichotomy in the low-mass slope and a locally suppressed `knee' mass , 2018, 1802.00053.

[52]  A. Strom,et al.  Measuring the Physical Conditions in High-redshift Star-forming Galaxies: Insights from KBSS-MOSFIRE , 2017, The Astrophysical Journal.

[53]  V. Springel,et al.  The evolution of the mass-metallicity relation and its scatter in IllustrisTNG , 2017, Monthly Notices of the Royal Astronomical Society.

[54]  D. Goddard,et al.  Firefly (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code , 2017, 1711.00865.

[55]  R. Delgado,et al.  Diffuse ionized gas in galaxies across the Hubble sequence at the CALIFA resolution , 2017, 1711.07844.

[56]  J. Comparat,et al.  The mass–metallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF , 2017, 1710.11135.

[57]  F. Prada,et al.  MULTIDARK-GALAXIES: Data release and first results , 2017, 1710.08150.

[58]  Matthew Colless,et al.  GAMA/G10-COSMOS/3D-HST: the 0 < z < 5 cosmic star formation history, stellar-mass, and dust-mass densities , 2017, 1710.06628.

[59]  P. Petitjean,et al.  The cosmic evolution of dust-corrected metallicity in the neutral gas , 2017, 1709.06578.

[60]  B. Davies,et al.  The initial masses of the red supergiant progenitors to Type II supernovae , 2017, 1709.06116.

[61]  B. Andrews,et al.  Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate , 2017, 1708.07107.

[62]  Molly S. Peeples,et al.  The Circumgalactic Medium , 2017, 1709.09180.

[63]  R. Yan,et al.  Biases in Metallicity Measurements from Global Galaxy Spectra: The Effects of Flux Weighting and Diffuse Ionized Gas Contamination , 2017, 1708.04625.

[64]  R. Bower,et al.  Galaxy metallicity scaling relations in the EAGLE simulations , 2017, 1704.00006.

[65]  M. Bershady,et al.  SDSS IV MaNGA – metallicity and nitrogen abundance gradients in local galaxies , 2017, 1703.03813.

[66]  Durham,et al.  The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium , 2017, 1702.02618.

[67]  M. Bershady,et al.  SDSS-IV MaNGA : spatially resolved star formation histories in galaxies as a function of galaxy mass and type , 2016, 1612.01546.

[68]  G. Bryan,et al.  Quantifying Supernovae-driven Multiphase Galactic Outflows , 2016, 1610.08971.

[69]  C. Lacey,et al.  The metal enrichment of passive galaxies in cosmological simulations of galaxy formation. , 2016, 1610.06578.

[70]  R. Klessen,et al.  The SILCC project - IV. Impact of dissociating and ionizing radiation on the interstellar medium and Hα emission as a tracer of the star formation rate , 2016, 1610.06569.

[71]  Berkeley,et al.  Why do high-redshift galaxies show diverse gas-phase metallicity gradients? , 2016, 1610.03498.

[72]  P. Hopkins,et al.  MUFASA: Galaxy star formation, gas, and metal properties across cosmic time , 2016, 1610.01626.

[73]  L. Hunt,et al.  Coevolution of metallicity and star formation in galaxies to z=3.7: I. A fundamental plane , 2016, 1608.05417.

[74]  R. Kudritzki,et al.  A SPECTROSCOPIC STUDY OF BLUE SUPERGIANT STARS IN THE SCULPTOR GALAXY NGC 55: CHEMICAL EVOLUTION AND DISTANCE , 2016, 1607.04325.

[75]  J. Fynbo,et al.  Evolution of the dust-to-metals ratio in high-redshift galaxies probed by GRB-DLAs , 2016, 1607.00288.

[76]  L. Kewley,et al.  The VIRUS-P Exploration of Nearby Galaxies (VENGA): Spatially Resolved Gas-Phase Metallicity Distributions in Barred and Unbarred Spirals , 2016, 1606.05713.

[77]  R. Klessen,et al.  The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae , 2016, 1606.05346.

[78]  P. Vreeswijk,et al.  HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY , 2016, 1604.08207.

[79]  K. Venn,et al.  The Impact of Modeling Assumptions in Galactic Chemical Evolution Models , 2016, 1604.07824.

[80]  B. Groves,et al.  CHARACTERIZING SPIRAL ARM AND INTERARM STAR FORMATION , 2016, 1603.08009.

[81]  P. Thomas,et al.  Iron in galaxy groups and clusters: confronting galaxy evolution models with a newly homogenized data set , 2016, 1603.04858.

[82]  J. Mohr,et al.  THE EVOLUTION OF THE INTRACLUSTER MEDIUM METALLICITY IN SUNYAEV ZEL’DOVICH-SELECTED GALAXY CLUSTERS AT 0 < z < 1.5 , 2016, 1603.03035.

[83]  A. Coil,et al.  THE MOSDEF SURVEY: THE STRONG AGREEMENT BETWEEN Hα AND UV-TO-FIR STAR FORMATION RATES FOR z ∼ 2 STAR-FORMING GALAXIES , 2016, 1603.02284.

[84]  R. Maiolino,et al.  Nitrogen and oxygen abundances in the Local Universe , 2016, 1603.00460.

[85]  L. Galbany,et al.  Shape of the oxygen abundance profiles in CALIFA face-on spiral galaxies , 2016, 1601.01542.

[86]  L. Kewley,et al.  Chemical abundances in high-redshift galaxies: a powerful new emission line diagnostic , 2016, 1601.01337.

[87]  F. Fontanot,et al.  Galaxy assembly, stellar feedback and metal enrichment: the view from the Gaea model , 2015, 1512.04531.

[88]  Qi Guo,et al.  Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models , 2015, 1512.00015.

[89]  G. Kauffmann,et al.  The massive end of the stellar mass function , 2015, 1509.07418.

[90]  C. Fryer,et al.  UNCERTAINTIES IN GALACTIC CHEMICAL EVOLUTION MODELS , 2015, 1509.06270.

[91]  A. Zitrin,et al.  A KECK ADAPTIVE OPTICS SURVEY OF A REPRESENTATIVE SAMPLE OF GRAVITATIONALLY LENSED STAR-FORMING GALAXIES: HIGH SPATIAL RESOLUTION STUDIES OF KINEMATICS AND METALLICITY GRADIENTS , 2015 .

[92]  R. Klessen,et al.  The SILCC (SImulating the LifeCycle of molecular Clouds) project - II. Dynamical evolution of the supernova-driven ISM and the launching of outflows , 2015, 1508.06646.

[93]  D. A. Kann,et al.  GRB hosts through cosmic time - VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1 , 2015, 1505.06743.

[94]  S. Smartt Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.

[95]  Northwestern,et al.  The origin and evolution of the galaxy mass–metallicity relation , 2015, 1504.02097.

[96]  Physik Dept.,et al.  A TWO-PARAMETER CRITERION FOR CLASSIFYING THE EXPLODABILITY OF MASSIVE STARS BY THE NEUTRINO-DRIVEN MECHANISM , 2015, 1503.07522.

[97]  R. Somerville,et al.  Star formation in semi-analytic galaxy formation models with multiphase gas , 2015, 1503.00755.

[98]  R. Klessen,et al.  The SILCC (SImulating the LifeCycle of molecular Clouds) project – I. Chemical evolution of the supernova-driven ISM , 2014, 1412.2749.

[99]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[100]  Hai Fu,et al.  OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY , 2014, 1412.1482.

[101]  S. White,et al.  Galaxy formation in the Planck cosmology – I. Matching the observed evolution of star formation rates, colours and stellar masses , 2014, 1410.0365.

[102]  A. M. Swinbank,et al.  A relationship between specific star formation rate and metallicity gradient within z ∼ 1 galaxies from KMOS-HiZELS , 2014, 1407.1047.

[103]  F. Bresolin,et al.  Carbon and oxygen abundances from recombination lines in low-metallicity star-forming galaxies. Implications for chemical evolution , 2014, 1406.3986.

[104]  S. Hilbert,et al.  Cosmological constraints from the CFHTLenS shear measurements using a new, accurate, and flexible way of predicting non-linear mass clustering , 2014, 1405.5888.

[105]  L. Kewley,et al.  THE UNIVERSAL RELATION OF GALACTIC CHEMICAL EVOLUTION: THE ORIGIN OF THE MASS–METALLICITY RELATION , 2014, 1404.7526.

[106]  Filippo Mannucci,et al.  Observational Clues to the Progenitors of Type Ia Supernovae , 2013, 1312.0628.

[107]  R. Cid Fernandes,et al.  A characteristic oxygen abundance gradient in galaxy disks unveiled with CALIFA , 2013, 1311.7052.

[108]  F. Mannucci,et al.  Metallicity evolution, metallicity gradients, and gas fractions at z ~ 3.4 , 2013, 1311.4576.

[109]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[110]  G. Kauffmann,et al.  Dilution in elliptical galaxies: implications for the relation between metallicity, stellar mass and star formation rate , 2013, 1310.5151.

[111]  J. Dunlop,et al.  The Mass-Metallicity-SFR Relation at z >~ 2 with 3D-HST , 2013, 1310.0816.

[112]  E. Levesque,et al.  [Ne iii]/[O ii] AS AN IONIZATION PARAMETER DIAGNOSTIC IN STAR-FORMING GALAXIES , 2013, 1309.0513.

[113]  G. Kauffmann,et al.  Modelling element abundances in semi-analytic models of galaxy formation , 2013, 1305.7231.

[114]  V. Springel,et al.  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[115]  B. Gibson,et al.  Constraining sub-grid physics with high-redshift spatially-resolved metallicity distributions , 2013, 1304.3020.

[116]  C. Baugh,et al.  A dynamical model of supernova feedback: gas outflows from the interstellar medium , 2013, 1303.6635.

[117]  G. Kauffmann,et al.  Star formation and metallicity gradients in semi-analytic models of disc galaxy formation , 2013, 1303.5586.

[118]  C. Carollo,et al.  GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY–MASS–STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS , 2013, 1303.5059.

[119]  F. Bresolin,et al.  TESTING FOR AZIMUTHAL ABUNDANCE GRADIENTS IN M101 , 2013, 1302.0094.

[120]  J. Binney,et al.  IONIZED ABSORBERS AS EVIDENCE FOR SUPERNOVA-DRIVEN COOLING OF THE LOWER GALACTIC CORONA , 2013, 1301.4998.

[121]  B. Andrews,et al.  THE MASS–METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES , 2012, 1211.3418.

[122]  Timothy D. Brandt,et al.  The delay-time distribution of Type Ia supernovae from Sloan II , 2012, 1206.0465.

[123]  Qi Guo,et al.  The effect of star formation on the redshift evolution of interstellar metals, atomic and molecular gas in galaxies , 2012, 1203.5280.

[124]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[125]  J. X. Prochaska,et al.  The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals , 2011, Science.

[126]  C. Maraston,et al.  Stellar population models at high spectral resolution , 2011, 1109.0543.

[127]  Carnegie,et al.  CHARTING THE EVOLUTION OF THE AGES AND METALLICITIES OF MASSIVE GALAXIES SINCE z = 0.7 , 2011, Proceedings of the International Astronomical Union.

[128]  R. Giovanelli,et al.  THE ARECIBO LEGACY FAST ALFA SURVEY: THE α.40 H i SOURCE CATALOG, ITS CHARACTERISTICS AND THEIR IMPACT ON THE DERIVATION OF THE H i MASS FUNCTION , 2011, 1109.0027.

[129]  J. Prochaska,et al.  THE COS-HALOS SURVEY: KECK LRIS AND MAGELLAN MagE OPTICAL SPECTROSCOPY , 2011, 1108.3852.

[130]  K. Finlator,et al.  An analytic model for the evolution of the stellar, gas and metal content of galaxies , 2011, 1108.0426.

[131]  G. Kauffmann,et al.  The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data , 2011, 1107.3145.

[132]  Piero Madau,et al.  RADIATIVE TRANSFER IN A CLUMPY UNIVERSE. IV. NEW SYNTHESIS MODELS OF THE COSMIC UV/X-RAY BACKGROUND , 2011, 1105.2039.

[133]  M. Blanton,et al.  IMPROVED BACKGROUND SUBTRACTION FOR THE SLOAN DIGITAL SKY SURVEY IMAGES , 2011, 1105.1960.

[134]  T. Thuan,et al.  NEW IMPROVED CALIBRATION RELATIONS FOR THE DETERMINATION OF ELECTRON TEMPERATURES AND OXYGEN AND NITROGEN ABUNDANCES IN H ii REGIONS , 2010 .

[135]  C. Lintott,et al.  Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies , 2010, 1007.3265.

[136]  G. Kauffmann,et al.  Erratum: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology , 2010, 1006.0106.

[137]  F. Mannucci,et al.  A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies , 2010, 1005.0006.

[138]  G. Kauffmann,et al.  The atomic-to-molecular transition and its relation to the scaling properties of galaxy discs in the local Universe , 2010, 1004.2325.

[139]  Simon D. M. White,et al.  One simulation to fit them all - changing the background parameters of a cosmological N-body simulation , 2009, 0912.4277.

[140]  G. Cresci,et al.  THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS , 2009, 0912.1858.

[141]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[142]  C. McKee,et al.  THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. III. A NEW METHOD FOR DETERMINING THE MOLECULAR CONTENT OF PRIMORDIAL AND DUSTY CLOUDS , 2009, 0908.0330.

[143]  G. Carraro,et al.  EXTRAGALACTIC CHEMICAL ABUNDANCES: DO H ii REGIONS AND YOUNG STARS TELL THE SAME STORY? THE CASE OF THE SPIRAL GALAXY NGC 300 , 2009, 0905.2791.

[144]  F. Bresolin,et al.  KECK HIRES SPECTROSCOPY OF EXTRAGALACTIC H ii REGIONS: C AND O ABUNDANCES FROM RECOMBINATION LINES , 2009, 0905.2532.

[145]  Michael E. Anderson,et al.  REDSHIFT EVOLUTION IN THE IRON ABUNDANCE OF THE INTRACLUSTER MEDIUM , 2009, 0904.1007.

[146]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[147]  S. White,et al.  The distribution of stellar mass in the low‐redshift Universe , 2009, 0901.0706.

[148]  C. McKee,et al.  THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. II: H i AND H2 COLUMN DENSITIES , 2008, 0811.0004.

[149]  P. Thomas,et al.  Hybrid galaxy evolution modelling: Monte Carlo Markov Chain parameter estimation in semi-analytic models of galaxy formation , 2008, 0810.2548.

[150]  Naohito Nakasato,et al.  CHEMODYNAMICAL SIMULATIONS OF THE MILKY WAY GALAXY , 2008, Proceedings of the International Astronomical Union.

[151]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[152]  S. Driver,et al.  On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function , 2008, 0804.2892.

[153]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[154]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[155]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[156]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[157]  S. Borgani,et al.  Tracing the evolution in the iron content of the ICM , 2006, astro-ph/0610940.

[158]  F. Bresolin Measuring Chemical Abundances in Extragalactic Metal-Rich HII Regions , 2006, astro-ph/0608410.

[159]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[160]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[161]  M. Zwaan,et al.  The HIPASS catalogue: ΩH i and environmental effects on the H i mass function of galaxies , 2005, astro-ph/0502257.

[162]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[163]  L. Kewley,et al.  Metallicities of 0.3 < z < 1.0 Galaxies in the GOODS-North Field , 2004, astro-ph/0408128.

[164]  -INAF,et al.  The evolution of the Milky Way from its earliest phases: Constraints on stellar nucleosynthesis , 2004, astro-ph/0401499.

[165]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[166]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[167]  T. M. Heckman,et al.  A High Spatial Resolution X-Ray and Hα Study of Hot Gas in the Halos of Star-forming Disk Galaxies. II. Quantifying Supernova Feedback , 2003, astro-ph/0306598.

[168]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[169]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[170]  Harvard-Smithsonian CfA,et al.  Using Strong Lines to Estimate Abundances in Extragalactic H II Regions and Starburst Galaxies , 2002, astro-ph/0206495.

[171]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[172]  T. Heckman,et al.  The Metal Content of Dwarf Starburst Winds: Results from Chandra Observations of NGC 1569 , 2002, astro-ph/0203513.

[173]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[174]  P. Marigo Chemical Yields from Low- and Intermediate-Mass Stars , 1999, astro-ph/0012181.

[175]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[176]  L. Costa,et al.  Extinction in SC galaxies , 1994 .

[177]  C. Lagos,et al.  Semi-analytic galaxies – III. The impact of supernova feedback on the mass–metallicity relation , 2018, Monthly Notices of the Royal Astronomical Society.

[178]  Q. Guo From Dwarf Spheroidals to cDs: Simulating the Full Galaxy Population in a LCDM Cosmology , 2011 .

[179]  Vladimir Avila-Reese,et al.  THE COSMIC STAR FORMATION HISTORY , 2011 .

[180]  F. Bresolin The Metal-Rich Universe: Measuring chemical abundances in extragalactic metal-rich H ii regions , 2008 .

[181]  A. Mezzacappa,et al.  Supernova Nucleosynthesis and Galactic Evolution , 2003 .

[182]  Bruno Leibundgut,et al.  From twilight to highlight : the physics of supernovae : proceedings of the ESO/MPA/MPE workshop held at Garching, Germany, 29-31 July 2002 , 2002 .

[183]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .