Recoil velocity at second post-Newtonian order for spinning black hole binaries

until merger. Furthermore, we provide expressions valid for generic orbits, and accurate at 2PN order, for the energy and angular momentum carried by gravitational waves emitted from spinning binary black holes. Specializing to quasi-circular orbits we compute the spin-spin terms at 2PN order in the expression for the evolution of the orbital frequency and found agreement with Mik oczi, Vas uth and Gergely. We also veried that in the limit of extreme mass ratio our expressions for the energy and angular momentum uxes match the ones of Tagoshi, Shibata, Tanaka and Sasaki obtained in the context of black hole perturbation theory.

[1]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[2]  T. Abel,et al.  The role of primordial kicks on black hole merger rates , 2005, astro-ph/0609443.

[3]  E. Quataert,et al.  Core Formation in Galactic Nuclei due to Recoiling Black Holes , 2004, astro-ph/0407488.

[4]  Gravitational waves from inspiraling compact binaries: The quadrupole-moment term , 1997, gr-qc/9709032.

[5]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  P. Marronetti,et al.  Binary black hole mergers: Large kicks for generic spin orientations , 2007, gr-qc/0703075.

[8]  Lawrence E. Kidder,et al.  High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants , 2008, 0804.4184.

[9]  Post-Newtonian expansion of gravitational waves from a particle in circular orbit around a rotating black hole: Up to O(v8) beyond the quadrupole formula. , 1996, Physical review. D, Particles and fields.

[10]  R. F. O’Connell,et al.  The gravitational interaction: Spin, rotation, and quantum effects-a review , 1979 .

[11]  Thibault Damour,et al.  Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[12]  G. Schäfer,et al.  Gravitational wave tails and binary star systems , 1993 .

[13]  G. Schāfer,et al.  Higher-order-in-spin interaction Hamiltonians for binary black holes from Poincaré invariance , 2008, 0809.2208.

[14]  S. McWilliams,et al.  Modeling Kicks from the Merger of Generic Black Hole Binaries , 2008, 0802.0416.

[15]  W. G. Dixon Dynamics of extended bodies in general relativity. I. Momentum and angular momentum , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  Frans Pretorius,et al.  Binary Black Hole Coalescence , 2007, 0710.1338.

[17]  Blanchet,et al.  Hereditary effects in gravitational radiation. , 1992, Physical review. D, Particles and fields.

[18]  Y. Zlochower,et al.  Large Merger Recoils and Spin Flips from Generic Black Hole Binaries , 2007, gr-qc/0701164.

[19]  K. Thorne Multipole expansions of gravitational radiation , 1980 .

[20]  S. McWilliams,et al.  Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis , 2007, 0707.0301.

[21]  Ernst Nils Dorband,et al.  Spin Diagrams for Equal-Mass Black Hole Binaries with Aligned Spins , 2007, 0708.3999.

[22]  David Merritt,et al.  Maximum gravitational recoil. , 2007, Physical review letters.

[23]  Z. Haiman,et al.  THE ASSEMBLY OF SUPERMASSIVE BLACK HOLES AT HIGH REDSHIFTS , 2008, 0807.4702.

[24]  Wiseman,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. II. Higher-order wave forms and radiation recoil. , 1992, Physical review. D, Particles and fields.

[25]  T. Damour,et al.  Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling , 2007, 0711.1048.

[26]  Rafael A. Porto,et al.  Spin(1)spin(2) effects in the motion of inspiralling compact binaries at third order in the post-Newtonian expansion , 2008 .

[27]  Dynamical evolution of intermediate mass black holes and their observable signatures in the nearby Universe , 2005, astro-ph/0501345.

[28]  Marc Favata,et al.  Consequences of Gravitational Radiation Recoil , 2004 .

[29]  A. Buonanno,et al.  Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion , 2006, gr-qc/0605139.

[30]  M. Volonteri Gravitational Recoil: Signatures on the Massive Black Hole Population , 2007, astro-ph/0703180.

[31]  A. Buonanno,et al.  The Distribution of Recoil Velocities from Merging Black Holes , 2007, astro-ph/0702641.

[32]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1999 .

[33]  Thibault Damour,et al.  Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation , 2000 .

[34]  M. Fitchett,et al.  Linear momentum and gravitational waves: circular orbits around a Schwarzschild black hole , 1984 .

[35]  G. Schäfer,et al.  Spin and tail effects in the gravitational-wave emission of compact binaries , 1997 .

[36]  S. Cole,et al.  The effect of gravitational recoil on black holes forming in a hierarchical universe , 2005, astro-ph/0512073.

[37]  J. Steinhoff,et al.  ADM canonical formalism for gravitating spinning objects , 2008, 0805.3136.

[38]  É. Racine Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction , 2008, 0803.1820.

[39]  Dae-Il Choi,et al.  Getting a Kick Out of Numerical Relativity , 2006, astro-ph/0603204.

[40]  Richard A. Matzner,et al.  Binary black holes: Spin dynamics and gravitational recoil , 2007, 0706.2541.

[41]  Gravitational radiation reaction in compact binary systems: Contribution of the quadrupole-monopole interaction , 2002, gr-qc/0211027.

[42]  Wiseman,et al.  Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order. , 1996, Physical review. D, Particles and fields.

[43]  Rafael A. Porto,et al.  Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries , 2008 .

[44]  T. Damour,et al.  Gravitational recoil during binary black hole coalescence using the effective one body approach , 2006, gr-qc/0602117.

[45]  Rafael A. Porto Post-Newtonian corrections to the motion of spinning bodies in nonrelativistic general relativity , 2006 .

[46]  Piero MadauEliot Quataert The Effect of Gravitational-Wave Recoil on the Demography of Massive Black Holes , 2004 .

[47]  M. Eracleous,et al.  SDSS J092712.65+294344.0: RECOILING BLACK HOLE OR A SUBPARSEC BINARY CANDIDATE? , 2008, 0809.3262.

[48]  Self-interaction spin effects in inspiralling compact binaries , 2005, astro-ph/0504538.

[49]  O. Semerák,et al.  Spinning test particles in a Kerr field – II , 1999 .

[50]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007 .

[51]  J. Bekenstein Gravitational-Radiation Recoil and Runaway Black Holes , 1973 .

[52]  Y. Zlochower,et al.  Extra-large remnant recoil velocities and spins from near-extremal-Bowen-York-spin black-hole binaries , 2008, 0803.0351.

[53]  The center-of-mass in Einsteins theory of gravitation , 1967 .

[54]  José A. González,et al.  Maximum kick from nonspinning black-hole binary inspiral. , 2007, Physical review letters.

[55]  Thibault Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000 .

[56]  S. Nissanke,et al.  Binary-black-hole merger: symmetry and the spin expansion. , 2007, Physical review letters.

[57]  A. Peres Classical Radiation Recoil , 1962 .

[58]  José A González,et al.  Supermassive recoil velocities for binary black-hole mergers with antialigned spins. , 2007, Physical review letters.

[59]  Y. Zlochower,et al.  Further insight into gravitational recoil , 2007, 0708.4048.

[60]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[61]  J. Steinhoff,et al.  Spin-squared Hamiltonian of next-to-leading order gravitational interaction , 2008, 0809.2200.

[62]  José A. González,et al.  Exploring black hole superkicks , 2007, 0707.0135.

[63]  Richard A. Matzner,et al.  Gravitational Recoil from Spinning Binary Black Hole Mergers , 2007, gr-qc/0701143.

[64]  Alessia Gualandris,et al.  Ejection of Supermassive Black Holes from Galaxy Cores , 2007, 0708.0771.

[65]  M. Fitchett The influence of gravitational wave momentum losses on the centre of mass motion of a Newtonian binary system , 1983 .

[66]  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[67]  Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms , 2009 .

[68]  A. Papapetrou,et al.  Spinning test-particles in general relativity. I , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[69]  Carlos O. Lousto,et al.  Modeling gravitational recoil from precessing highly spinning unequal-mass black-hole binaries , 2008, 0805.0159.

[70]  R. Wald Gravitational spin interaction , 1972 .

[71]  Z. Haiman Constraints from Gravitational Recoil on the Growth of Supermassive Black Holes at High Redshift , 2004, astro-ph/0404196.

[72]  C. Will,et al.  Gravitational Recoil of Inspiraling Black Hole Binaries to Second Post-Newtonian Order , 2005, astro-ph/0507692.

[73]  '. Racine,et al.  Spin and energy evolution equations for a wide class of extended bodies , 2004, gr-qc/0405058.

[74]  Gravitational waves from inspiraling compact binaries: Angular momentum flux, evolution of the orbital elements, and the waveform to the second post-Newtonian order , 1997, gr-qc/9710075.