Template-free synthesis of hierarchically porous SiBCN monolith from organic gel precursors

[1]  B. Su,et al.  Synthesis and applications of hierarchically porous catalysts , 2014 .

[2]  L. An,et al.  Silicon Carbonitride Hollow Nanospheres from a Block‐Copolymer Precursor , 2014 .

[3]  S. Bernard,et al.  Ordered Mesoporous Polymer‐Derived Ceramics and Their Processing into Hierarchically Porous Boron Nitride and Silicoboron Carbonitride Monoliths , 2014 .

[4]  M. Waggoner,et al.  Christian* , 2014 .

[5]  M. Bechelany,et al.  Silicon–boron–carbon–nitrogen monoliths with high, interconnected and hierarchical porosity , 2013 .

[6]  Nicholas D. Petkovich,et al.  Controlling Macro‐ and Mesostructures with Hierarchical Porosity Through Combined Hard and Soft Templating , 2013 .

[7]  Fuqian Yang,et al.  On electric conduction of amorphous silicon carbonitride derived from a polymeric precursor , 2013 .

[8]  Linan An,et al.  Near-Field Electrospray Microprinting of Polymer-Derived Ceramics , 2013, Journal of Microelectromechanical Systems.

[9]  B. Su,et al.  Hierarchically Structured Porous Materials for Energy Conversion and Storage , 2012 .

[10]  Benjamin Paul,et al.  Supported Mesoporous and Hierarchical Porous Pd/TiO2 Catalytic Coatings with Controlled Particle Size and Pore Structure , 2012 .

[11]  M. Weinmann,et al.  Study of the intermediate pyrolysis steps and mechanism identification of polymer-derived SiBCN ceramics , 2012 .

[12]  P. Colombo,et al.  Silicon carbide-based foams from direct blowing of polycarbosilane , 2012 .

[13]  A. Gurlo,et al.  Thermal decomposition of carbon-rich polymer-derived silicon carbonitrides leading to ceramics with high specific surface area and tunable micro- and mesoporosity , 2012 .

[14]  C. Santilli,et al.  Design of hierarchical porous aluminas by using one-pot synthesis and different calcination temperatures , 2012, Journal of Sol-Gel Science and Technology.

[15]  S. Bernard,et al.  Novel monolith-type boron nitride hierarchical foams obtained through integrative chemistry , 2011 .

[16]  S. Bernard,et al.  Ordered mesoporous silicoboron carbonitride ceramics from boron-modified polysilazanes: Polymer synthesis, processing and properties , 2011 .

[17]  Paolo Colombo,et al.  Polymer‐Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics , 2010 .

[18]  R. Raj,et al.  Ultrahigh‐Temperature Semiconductors Made from Polymer‐Derived Ceramics , 2010 .

[19]  Chengying Xu,et al.  Polymer-derived ceramic composite fibers with aligned pristine multiwalled carbon nanotubes. , 2010, ACS applied materials & interfaces.

[20]  R. Riedel,et al.  Highly porous macro- and micro-cellular ceramics from a polysilazane precursor , 2009 .

[21]  J. Woltersdorf,et al.  Cyclic Silylcarbodiimides as Precursors for Porous Si/C/N Materials: Formation, Structures, and Stabilities , 2009 .

[22]  Andrew A. Burns,et al.  Integrating structure control over multiple length scales in porous high temperature ceramics with functional platinum nanoparticles. , 2009, Nano letters.

[23]  Weixing Xu,et al.  Effect of Thermal Initiator Concentration on the Electrical Behavior of Polymer-Derived Amorphous Silicon Carbonitrides , 2008 .

[24]  S. Bernard,et al.  Ordered Mesoporous Silicoboron Carbonitride Materials via Preceramic Polymer Nanocasting , 2008 .

[25]  L. Zhai,et al.  Superhydrophobic Mats of Polymer‐Derived Ceramic Fibers , 2008 .

[26]  L. Zhai,et al.  A Silicon Carbonitride Ceramic with Anomalously High Piezoresistivity , 2008 .

[27]  Hyoun‐Ee Kim,et al.  Highly Aligned Porous Silicon Carbide Ceramics by Freezing Polycarbosilane/Camphene Solution , 2007 .

[28]  P. Adelhelm,et al.  Synthesis and characterization of SiC materials with hierarchical porosity obtained by replication techniques. , 2006, Physical chemistry chemical physics : PCCP.

[29]  M. Weinmann,et al.  Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: synthesis, melt-spinning, curing and ceramic conversion , 2005 .

[30]  Paul J. A. Kenis,et al.  Tailored Macroporous SiCN and SiC Structures for High‐Temperature Fuel Reforming , 2005 .

[31]  F. Aldinger,et al.  Novel Silicon‐Boron‐Carbon‐Nitrogen Materials Thermally Stable up to 2200°C , 2004 .

[32]  R. Vaidyanathan,et al.  Carbon‐Nanotube‐Reinforced Polymer‐Derived Ceramic Composites , 2004 .

[33]  Xiaodong Li,et al.  Fabrication and characterization of ordered macroporous PMS-derived SiC from a sacrificial template method , 2004 .

[34]  M. Weinmann,et al.  Design of Polymeric Si−B−C−N Ceramic Precursors for Application in Fiber-Reinforced Composite Materials , 2000 .

[35]  M. Weinmann,et al.  Synthesis and Thermal Behavior of Novel Si—B—C—N Ceramic Precursors. , 2000 .

[36]  Sporn,et al.  Ceramic fibers for matrix composites in high-temperature engine applications , 1999, Science.

[37]  M. Weinmann,et al.  Boron-modified polysilylcarbodi-imides as precursors for Si–B–C–N ceramics: Synthesis, plastic-forming and high-temperature behavior , 1998 .

[38]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[39]  M. Weinmann,et al.  Boron-containing polysilylcarbodi-imides: A new class of molecular precursors for Si-B-C-N ceramics , 1997 .

[40]  R. Riedel,et al.  Preparation of Non-Oxidic Silicon Ceramics by an Anhydrous Sol–Gel Process† , 1997 .

[41]  L. Alexander,et al.  X-ray diffraction methods in polymer science , 1969 .

[42]  Gustaf Arrhenius,et al.  X-ray diffraction procedures for polycrystalline and amorphous materials , 1955 .

[43]  A. Tobolsky,et al.  Quantitative X-Ray Studies of Order in Amorphous and Crystalline Polymers , 1951 .

[44]  Schoeller Leitfaden der theoretischen Chemie. Von Prof. W. Herz. Verlag von Ferdinand Enke, Stuttgart. Dritte Auflage , 1924 .

[45]  V. Bright,et al.  Ceramic MEMS new materials, innovative processing and future applications , 2001 .

[46]  F. Aldinger,et al.  A silicoboron carbonitride ceramic stable to 2,000°C , 1996, Nature.