Gap-Planar Graphs
暂无分享,去创建一个
Sang Won Bae | Csaba D. Tóth | Fabrizio Montecchiani | Peter Eades | Ignaz Rutter | Matias Korman | Jinhee Chun | Luca Grilli | Kord Eickmeyer | Seok-Hee Hong | Jean-François Baffier
[1] Marc Noy,et al. Flipping Edges in Triangulations , 1999, Discret. Comput. Geom..
[2] Hiroshi Nagamochi,et al. Testing Full Outer-2-planarity in Linear Time , 2015, WG.
[3] Alexander Wolff,et al. Augmenting the Connectivity of Planar and Geometric Graphs , 2012, J. Graph Algorithms Appl..
[4] Franz-Josef Brandenburg,et al. Journal of Graph Algorithms and Applications 1-planarity of Graphs with a Rotation System 68 Auer Et Al. 1-planarity of Graphs with a Rotation System , 2022 .
[5] Haitao Wang,et al. A new algorithm for computing visibility graphs of polygonal obstacles in the plane , 2015, J. Comput. Geom..
[6] Micha Sharir,et al. Quasi-planar graphs have a linear number of edges , 1995, GD.
[7] Arthur Appel,et al. The haloed line effect for hidden line elimination. , 1979, SIGGRAPH '79.
[8] Gábor Tardos,et al. On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.
[9] Michael A. Bekos,et al. On RAC drawings of 1-planar graphs , 2017, Theor. Comput. Sci..
[10] Michael A. Bekos,et al. On the Density of Non-simple 3-Planar Graphs , 2016, Graph Drawing.
[11] Evangelos Kranakis,et al. Bounded Length, 2-Edge Augmentation of Geometric Planar Graphs , 2012, Discret. Math. Algorithms Appl..
[12] Evangelos Kranakis,et al. Approximating the Edge Length of 2-Edge Connected Planar Geometric Graphs on a Set of Points , 2012, LATIN.
[13] Daniel J. Kleitman,et al. The crossing number of K5,n , 1970 .
[14] S. Hakimi. On the degrees of the vertices of a directed graph , 1965 .
[15] R. Guy. Crossing numbers of graphs , 1972 .
[16] Michael Kaufmann,et al. Mad at Edge Crossings? Break the Edges! , 2012, FUN.
[17] Christos H. Papadimitriou,et al. The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..
[18] Michael A. Bekos,et al. On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs , 2014, Algorithmica.
[19] John Hershberger,et al. Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.
[20] Takeshi Tokuyama,et al. Algoritihmcs for Beyond Planar Graphs (NII Shonan Meeting 2016-17) , 2016, NII Shonan Meet. Rep..
[21] Walter Didimo,et al. Recognizing and drawing IC-planar graphs , 2015, Theor. Comput. Sci..
[22] David S. Johnson,et al. Crossing Number is NP-Complete , 1983 .
[23] Giuseppe Liotta,et al. An annotated bibliography on 1-planarity , 2017, Comput. Sci. Rev..
[24] Stephen G. Kobourov,et al. Computing homotopic shortest paths efficiently , 2006, Comput. Geom..
[25] László A. Végh. Augmenting Undirected Node-Connectivity by One , 2011, SIAM J. Discret. Math..
[26] Weidong Huang,et al. Larger crossing angles make graphs easier to read , 2014, J. Vis. Lang. Comput..
[27] Takeshi Tokuyama,et al. Algorithmics for Beyond Planar Graphs , 2016 .
[28] Peter Eades,et al. Circular right-angle crossing drawings in linear time , 2016, Theor. Comput. Sci..
[29] Vladimir P. Korzhik,et al. Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2009, J. Graph Theory.
[30] Michael A. Bekos,et al. Guest Editors' Foreword and Overview , 2018, J. Graph Algorithms Appl..
[31] Andrew U. Frank,et al. How to orient the edges of a graph? in Combinatorics , 1976 .
[32] C. Lawson. Software for C1 Surface Interpolation , 1977 .
[33] Giuseppe Liotta,et al. A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system , 2013, Theor. Comput. Sci..
[34] Christian Bachmaier,et al. Outer 1-Planar Graphs , 2016, Algorithmica.
[35] László A. Végh,et al. Fixed-Parameter Algorithms for Minimum-Cost Edge-Connectivity Augmentation , 2013, TALG.
[36] David Eppstein,et al. Crossing Patterns in Nonplanar Road Networks , 2017, SIGSPATIAL/GIS.
[37] Charles L. Lawson,et al. Transforming triangulations , 1972, Discret. Math..
[38] Michael A. Bekos,et al. On the Relationship between k-Planar and k-Quasi Planar Graphs , 2017, WG.
[39] Sergei N. Bespamyatnikh. Computing homotopic shortest paths in the plane , 2003, SODA '03.
[40] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[41] Brendan D. McKay,et al. The Generation of Fullerenes , 2012, J. Chem. Inf. Model..
[42] Maurice Queyranne,et al. A network flow solution to some nonlinear 0-1 programming problems, with applications to graph theory , 1982, Networks.
[43] Thore Husfeldt,et al. Guest Editorial: Special Issue on Parameterized and Exact Computation , 2017, Algorithmica.
[44] Pat Morin,et al. Orthogonal Tree Decompositions of Graphs , 2017, SIAM J. Discret. Math..
[45] Vladimir P. Korzhik,et al. Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2013, J. Graph Theory.
[46] Jorge Urrutia,et al. Augmenting the connectivity of geometric graphs , 2008, Comput. Geom..
[47] Petra Mutzel,et al. On the Hardness and Approximability of Planar Biconnectivity Augmentation , 2009, COCOON.
[48] Guy Kortsarz,et al. A Simplified 1.5-Approximation Algorithm for Augmenting Edge-Connectivity of a Graph from 1 to 2 , 2015, ACM Trans. Algorithms.
[49] Csaba D. Tóth. Connectivity augmentation in planar straight line graphs , 2012, Eur. J. Comb..
[50] Pat Morin,et al. Corrigendum: Orthogonal Tree Decompositions of Graphs , 2018, SIAM J. Discret. Math..
[51] Otfried Cheong,et al. On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.
[52] Venkat Venkateswaran,et al. Minimizing maximum indegree , 2004, Discret. Appl. Math..
[53] C. Zarankiewicz. On a problem of P. Turan concerning graphs , 1955 .
[54] Balázs Keszegh,et al. On the Size of Planarly Connected Crossing Graphs , 2015, GD.
[55] János Pach,et al. Improving the Crossing Lemma by Finding More Crossings in Sparse Graphs , 2006, Discret. Comput. Geom..
[56] Ioannis G. Tollis,et al. Fan-planarity: Properties and complexity , 2014, Theor. Comput. Sci..
[57] Mark de Berg,et al. Optimal Binary Space Partitions for Segments in the Plane , 2012, Int. J. Comput. Geom. Appl..
[58] Joseph JáJá,et al. Approximation Algorithms for Several Graph Augmentation Problems , 1981, SIAM J. Comput..
[59] A. Frank. Connections in Combinatorial Optimization , 2011 .
[60] János Pach,et al. The Number of Edges in k-Quasi-planar Graphs , 2011, SIAM J. Discret. Math..
[61] János Pach,et al. Graphs drawn with few crossings per edge , 1997, Comb..
[62] Goos Kant,et al. Planar Graph Augmentation Problems (Extended Abstract) , 1991, WADS.
[63] Csaba D. Tóth,et al. Augmenting the Edge Connectivity of Planar Straight Line Graphs to Three , 2011, Algorithmica.
[64] Mark H. Overmars,et al. New methods for computing visibility graphs , 1988, SCG '88.
[65] Bettina Speckmann,et al. Edges and Switches, Tunnels and Bridges , 2007, WADS.
[66] Walter Didimo,et al. The Crossing-Angle Resolution in Graph Drawing , 2013 .
[67] Giuseppe Liotta,et al. Graph drawing beyond planarity: some results and open problems , 2014, ICTCS.
[68] Alexander Pilz. Flip distance between triangulations of a planar point set is APX-hard , 2014, Comput. Geom..
[69] Csaba D. Tóth,et al. Two-Planar Graphs Are Quasiplanar , 2017, MFCS.
[70] Michael Kaufmann,et al. Beyond-Planar Graphs: Algorithmics and Combinatorics (Dagstuhl Seminar 16452) , 2016, Dagstuhl Reports.
[71] Ignaz Rutter,et al. Regular Augmentation of Planar Graphs , 2014, Algorithmica.
[72] Ioannis G. Tollis,et al. Fan-planarity: Properties and complexity , 2015, Theor. Comput. Sci..
[73] Csaba D. Tóth,et al. Plane Geometric Graph Augmentation: A Generic Perspective , 2013 .
[74] Michael Kaufmann,et al. The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..
[75] Petra Mutzel,et al. Planar Biconnectivity Augmentation with Fixed Embedding , 2009, IWOCA.
[76] Alexander Grigoriev,et al. Algorithms for Graphs Embeddable with Few Crossings Per Edge , 2005, FCT.
[77] Giuseppe Liotta,et al. A Linear-Time Algorithm for Testing Outer-1-Planarity , 2013, Algorithmica.
[78] Alexander Wolff,et al. Progress on Partial Edge Drawings , 2012, GD.
[79] David Eppstein,et al. Structure of Graphs with Locally Restricted Crossings , 2015, SIAM J. Discret. Math..
[80] Sanjeev Arora,et al. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.
[81] E. Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .