Gap-Planar Graphs

We introduce the family of k-gap-planar graphs for \(k \ge 0\), i.e., graphs that have a drawing in which each crossing is assigned to one of the two involved edges and each edge is assigned at most k of its crossings. This definition finds motivation in edge casing, as a \(k\)-gap-planar graph can be drawn crossing-free after introducing at most k local gaps per edge. We obtain results on the maximum density, drawability of complete graphs, complexity of the recognition problem, and relationships with other families of beyond-planar graphs.

[1]  Marc Noy,et al.  Flipping Edges in Triangulations , 1999, Discret. Comput. Geom..

[2]  Hiroshi Nagamochi,et al.  Testing Full Outer-2-planarity in Linear Time , 2015, WG.

[3]  Alexander Wolff,et al.  Augmenting the Connectivity of Planar and Geometric Graphs , 2012, J. Graph Algorithms Appl..

[4]  Franz-Josef Brandenburg,et al.  Journal of Graph Algorithms and Applications 1-planarity of Graphs with a Rotation System 68 Auer Et Al. 1-planarity of Graphs with a Rotation System , 2022 .

[5]  Haitao Wang,et al.  A new algorithm for computing visibility graphs of polygonal obstacles in the plane , 2015, J. Comput. Geom..

[6]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.

[7]  Arthur Appel,et al.  The haloed line effect for hidden line elimination. , 1979, SIGGRAPH '79.

[8]  Gábor Tardos,et al.  On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.

[9]  Michael A. Bekos,et al.  On RAC drawings of 1-planar graphs , 2017, Theor. Comput. Sci..

[10]  Michael A. Bekos,et al.  On the Density of Non-simple 3-Planar Graphs , 2016, Graph Drawing.

[11]  Evangelos Kranakis,et al.  Bounded Length, 2-Edge Augmentation of Geometric Planar Graphs , 2012, Discret. Math. Algorithms Appl..

[12]  Evangelos Kranakis,et al.  Approximating the Edge Length of 2-Edge Connected Planar Geometric Graphs on a Set of Points , 2012, LATIN.

[13]  Daniel J. Kleitman,et al.  The crossing number of K5,n , 1970 .

[14]  S. Hakimi On the degrees of the vertices of a directed graph , 1965 .

[15]  R. Guy Crossing numbers of graphs , 1972 .

[16]  Michael Kaufmann,et al.  Mad at Edge Crossings? Break the Edges! , 2012, FUN.

[17]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..

[18]  Michael A. Bekos,et al.  On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs , 2014, Algorithmica.

[19]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.

[20]  Takeshi Tokuyama,et al.  Algoritihmcs for Beyond Planar Graphs (NII Shonan Meeting 2016-17) , 2016, NII Shonan Meet. Rep..

[21]  Walter Didimo,et al.  Recognizing and drawing IC-planar graphs , 2015, Theor. Comput. Sci..

[22]  David S. Johnson,et al.  Crossing Number is NP-Complete , 1983 .

[23]  Giuseppe Liotta,et al.  An annotated bibliography on 1-planarity , 2017, Comput. Sci. Rev..

[24]  Stephen G. Kobourov,et al.  Computing homotopic shortest paths efficiently , 2006, Comput. Geom..

[25]  László A. Végh Augmenting Undirected Node-Connectivity by One , 2011, SIAM J. Discret. Math..

[26]  Weidong Huang,et al.  Larger crossing angles make graphs easier to read , 2014, J. Vis. Lang. Comput..

[27]  Takeshi Tokuyama,et al.  Algorithmics for Beyond Planar Graphs , 2016 .

[28]  Peter Eades,et al.  Circular right-angle crossing drawings in linear time , 2016, Theor. Comput. Sci..

[29]  Vladimir P. Korzhik,et al.  Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2009, J. Graph Theory.

[30]  Michael A. Bekos,et al.  Guest Editors' Foreword and Overview , 2018, J. Graph Algorithms Appl..

[31]  Andrew U. Frank,et al.  How to orient the edges of a graph? in Combinatorics , 1976 .

[32]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[33]  Giuseppe Liotta,et al.  A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system , 2013, Theor. Comput. Sci..

[34]  Christian Bachmaier,et al.  Outer 1-Planar Graphs , 2016, Algorithmica.

[35]  László A. Végh,et al.  Fixed-Parameter Algorithms for Minimum-Cost Edge-Connectivity Augmentation , 2013, TALG.

[36]  David Eppstein,et al.  Crossing Patterns in Nonplanar Road Networks , 2017, SIGSPATIAL/GIS.

[37]  Charles L. Lawson,et al.  Transforming triangulations , 1972, Discret. Math..

[38]  Michael A. Bekos,et al.  On the Relationship between k-Planar and k-Quasi Planar Graphs , 2017, WG.

[39]  Sergei N. Bespamyatnikh Computing homotopic shortest paths in the plane , 2003, SODA '03.

[40]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[41]  Brendan D. McKay,et al.  The Generation of Fullerenes , 2012, J. Chem. Inf. Model..

[42]  Maurice Queyranne,et al.  A network flow solution to some nonlinear 0-1 programming problems, with applications to graph theory , 1982, Networks.

[43]  Thore Husfeldt,et al.  Guest Editorial: Special Issue on Parameterized and Exact Computation , 2017, Algorithmica.

[44]  Pat Morin,et al.  Orthogonal Tree Decompositions of Graphs , 2017, SIAM J. Discret. Math..

[45]  Vladimir P. Korzhik,et al.  Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2013, J. Graph Theory.

[46]  Jorge Urrutia,et al.  Augmenting the connectivity of geometric graphs , 2008, Comput. Geom..

[47]  Petra Mutzel,et al.  On the Hardness and Approximability of Planar Biconnectivity Augmentation , 2009, COCOON.

[48]  Guy Kortsarz,et al.  A Simplified 1.5-Approximation Algorithm for Augmenting Edge-Connectivity of a Graph from 1 to 2 , 2015, ACM Trans. Algorithms.

[49]  Csaba D. Tóth Connectivity augmentation in planar straight line graphs , 2012, Eur. J. Comb..

[50]  Pat Morin,et al.  Corrigendum: Orthogonal Tree Decompositions of Graphs , 2018, SIAM J. Discret. Math..

[51]  Otfried Cheong,et al.  On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.

[52]  Venkat Venkateswaran,et al.  Minimizing maximum indegree , 2004, Discret. Appl. Math..

[53]  C. Zarankiewicz On a problem of P. Turan concerning graphs , 1955 .

[54]  Balázs Keszegh,et al.  On the Size of Planarly Connected Crossing Graphs , 2015, GD.

[55]  János Pach,et al.  Improving the Crossing Lemma by Finding More Crossings in Sparse Graphs , 2006, Discret. Comput. Geom..

[56]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2014, Theor. Comput. Sci..

[57]  Mark de Berg,et al.  Optimal Binary Space Partitions for Segments in the Plane , 2012, Int. J. Comput. Geom. Appl..

[58]  Joseph JáJá,et al.  Approximation Algorithms for Several Graph Augmentation Problems , 1981, SIAM J. Comput..

[59]  A. Frank Connections in Combinatorial Optimization , 2011 .

[60]  János Pach,et al.  The Number of Edges in k-Quasi-planar Graphs , 2011, SIAM J. Discret. Math..

[61]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[62]  Goos Kant,et al.  Planar Graph Augmentation Problems (Extended Abstract) , 1991, WADS.

[63]  Csaba D. Tóth,et al.  Augmenting the Edge Connectivity of Planar Straight Line Graphs to Three , 2011, Algorithmica.

[64]  Mark H. Overmars,et al.  New methods for computing visibility graphs , 1988, SCG '88.

[65]  Bettina Speckmann,et al.  Edges and Switches, Tunnels and Bridges , 2007, WADS.

[66]  Walter Didimo,et al.  The Crossing-Angle Resolution in Graph Drawing , 2013 .

[67]  Giuseppe Liotta,et al.  Graph drawing beyond planarity: some results and open problems , 2014, ICTCS.

[68]  Alexander Pilz Flip distance between triangulations of a planar point set is APX-hard , 2014, Comput. Geom..

[69]  Csaba D. Tóth,et al.  Two-Planar Graphs Are Quasiplanar , 2017, MFCS.

[70]  Michael Kaufmann,et al.  Beyond-Planar Graphs: Algorithmics and Combinatorics (Dagstuhl Seminar 16452) , 2016, Dagstuhl Reports.

[71]  Ignaz Rutter,et al.  Regular Augmentation of Planar Graphs , 2014, Algorithmica.

[72]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2015, Theor. Comput. Sci..

[73]  Csaba D. Tóth,et al.  Plane Geometric Graph Augmentation: A Generic Perspective , 2013 .

[74]  Michael Kaufmann,et al.  The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..

[75]  Petra Mutzel,et al.  Planar Biconnectivity Augmentation with Fixed Embedding , 2009, IWOCA.

[76]  Alexander Grigoriev,et al.  Algorithms for Graphs Embeddable with Few Crossings Per Edge , 2005, FCT.

[77]  Giuseppe Liotta,et al.  A Linear-Time Algorithm for Testing Outer-1-Planarity , 2013, Algorithmica.

[78]  Alexander Wolff,et al.  Progress on Partial Edge Drawings , 2012, GD.

[79]  David Eppstein,et al.  Structure of Graphs with Locally Restricted Crossings , 2015, SIAM J. Discret. Math..

[80]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[81]  E. Sperner Neuer beweis für die invarianz der dimensionszahl und des gebietes , 1928 .