Mathematical Analysis and Time-Domain Finite Element Simulation of Carpet Cloak

In this paper, a mathematical analysis of the popular carpet cloak model is carried out. The well-posedness of the model is first proved, and then a finite element time-domain method is developed for solving this model. Three carpet cloak simulations are demonstrated to show the effectiveness of our model and the developed algorithm. To the best of our knowledge, this is the first mathematical analysis carried out for the carpet cloak model. The numerical simulation using edge elements for the carpet cloak model is also original.

[1]  Yunqing Huang,et al.  Well-posedness study and finite element simulation of time-domain cylindrical and elliptical cloaks , 2015, Math. Comput..

[2]  T. Tyc,et al.  Broadband Invisibility by Non-Euclidean Cloaking , 2009, Science.

[3]  Peter J. Collins,et al.  A Green ’ s Function Approach to Calculate Scattering Width for Cylindrical Cloaks , 2010 .

[4]  Wei Yang,et al.  Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks , 2012, J. Comput. Phys..

[5]  Yu Luo,et al.  Macroscopic invisibility cloaking of visible light , 2010, Nature communications.

[6]  Hongyu Liu,et al.  Nearly Cloaking the Electromagnetic Fields , 2014, SIAM J. Appl. Math..

[7]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[8]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[9]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[10]  Ting Zhou,et al.  On Approximate Electromagnetic Cloaking by Transformation Media , 2010, SIAM J. Appl. Math..

[11]  Habib Ammari,et al.  Spectral Theory of a Neumann–Poincaré-Type Operator and Analysis of Cloaking Due to Anomalous Localized Resonance , 2011, 1212.5066.

[12]  G. Milton,et al.  On the cloaking effects associated with anomalous localized resonance , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  R. Kohn,et al.  Cloaking via change of variables in electric impedance tomography , 2008 .

[14]  Habib Ammari,et al.  Enhancement of Near Cloaking for the Full Maxwell Equations , 2012, SIAM J. Appl. Math..

[15]  Douglas H. Werner,et al.  Transformation Electromagnetics and Metamaterials : fundamental principles and applications , 2014 .

[16]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[17]  Jan S. Hesthaven Time-domain finite element methods for Maxwell"s equations in metamaterials , 2014 .

[18]  이현대,et al.  Anomalous localized resonance using a folded geometry in three dimensions , 2013 .

[19]  Habib Ammari,et al.  Communications in Mathematical Physics Enhancement of Near-Cloaking . Part II : The Helmholtz Equation , 2013 .

[20]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[21]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[22]  Habib Ammari,et al.  Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking by anomalous localized resonance II , 2014 .

[23]  Robert V. Kohn,et al.  Cloaking via change of variables for the Helmholtz equation , 2010 .

[24]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[25]  Wei Yang,et al.  Modeling Backward Wave Propagation in Metamaterials by the Finite Element Time-Domain Method , 2013, SIAM J. Sci. Comput..

[26]  Matti Lassas,et al.  Cloaking Devices, Electromagnetic Wormholes, and Transformation Optics , 2009, SIAM Rev..

[27]  Habib Ammari,et al.  Enhancement of near-cloaking , 2012 .

[28]  J. Zou,et al.  Nearly cloaking the full Maxwell equations: Cloaking active contents with general conducting layers , 2013, 1305.1994.

[29]  Daniel Onofrei,et al.  Broadband exterior cloaking. , 2009, Optics express.