Superior photothermal black TiO2 with random size distribution as flexible film for efficient solar steam generation

[1]  Xiaobo Chen,et al.  Recent progress of nanostructured interfacial solar vapor generators , 2019 .

[2]  Zhi‐Kang Xu,et al.  Water Purification/Harvesting: Harnessing Solar‐Driven Photothermal Effect toward the Water–Energy Nexus (Adv. Sci. 18/2019) , 2019, Advanced Science.

[3]  G. Owens,et al.  Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy , 2019, Materials Today Energy.

[4]  Ruben Z. Waldman,et al.  Porphyrin Covalent Organic Framework (POF)‐Based Interface Engineering for Solar Steam Generation , 2019, Advanced Materials Interfaces.

[5]  Baoxing Xu,et al.  Multilayer Polypyrrole Nanosheets with Self‐Organized Surface Structures for Flexible and Efficient Solar–Thermal Energy Conversion , 2019, Advanced materials.

[6]  Liangbing Hu,et al.  Challenges and Opportunities for Solar Evaporation , 2019, Joule.

[7]  G. Ho,et al.  Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production , 2019, Energy & Environmental Science.

[8]  L. Qu,et al.  Direct solar steam generation system for clean water production , 2019, Energy Storage Materials.

[9]  Chaorong Li,et al.  The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction , 2019, Applied Catalysis B: Environmental.

[10]  A. Naldoni,et al.  Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production , 2018, ACS catalysis.

[11]  Jia Zhu,et al.  Solar-driven interfacial evaporation , 2018, Nature Energy.

[12]  Y. Xiong,et al.  Defect engineering in photocatalytic materials , 2018, Nano Energy.

[13]  Shikuan Yang,et al.  Durable Broadband and Omnidirectional Ultra-antireflective Surfaces. , 2018, ACS applied materials & interfaces.

[14]  Xianbao Wang,et al.  Bifunctional, Moth-Eye-Like Nanostructured Black Titania Nanocomposites for Solar-Driven Clean Water Generation. , 2018, ACS applied materials & interfaces.

[15]  Liangbing Hu,et al.  Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification , 2018 .

[16]  Q. Pei,et al.  A Solution Processed Flexible Nanocomposite Substrate with Efficient Light Extraction via Periodic Wrinkles for White Organic Light‐Emitting Diodes , 2018, Advanced Optical Materials.

[17]  F. Besenbacher,et al.  Phase-Transition Induced Conversion into a Photothermal Material: Quasi-Metallic WO2.9 Nanorods for Solar Water Evaporation and Anticancer Photothermal Therapy. , 2018, Angewandte Chemie.

[18]  Chengxin Wang,et al.  The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion , 2018, Science Advances.

[19]  Wei Zhao,et al.  Hydrogenated Blue Titania for Efficient Solar to Chemical Conversions: Preparation, Characterization, and Reaction Mechanism of CO2 Reduction , 2018 .

[20]  Jing Wang,et al.  Ultra-antireflective synthetic brochosomes , 2017, Nature Communications.

[21]  Zhongfan Liu,et al.  Hierarchical Graphene Foam for Efficient Omnidirectional Solar–Thermal Energy Conversion , 2017, Advanced materials.

[22]  Joseph M Slocik,et al.  Bio-Optics and Bio-Inspired Optical Materials. , 2017, Chemical reviews.

[23]  Yao Yao,et al.  NaBH4 modified TiO2: Defect site enhancement related to its photocatalytic activity , 2017 .

[24]  Liangbing Hu,et al.  Highly Flexible and Efficient Solar Steam Generation Device , 2017, Advanced materials.

[25]  Xuan Wu,et al.  A Plant‐Transpiration‐Process‐Inspired Strategy for Highly Efficient Solar Evaporation , 2017 .

[26]  L. Qu,et al.  Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water. , 2017, ACS nano.

[27]  Jun Zhou,et al.  Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation. , 2017, ACS applied materials & interfaces.

[28]  R. Naik,et al.  Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination. , 2017, ACS applied materials & interfaces.

[29]  N. Wu,et al.  Effects of Defects on Photocatalytic Activity of Hydrogen-Treated Titanium Oxide Nanobelts , 2017 .

[30]  G. Ozin,et al.  Synthesis of Black TiOx Nanoparticles by Mg Reduction of TiO2 Nanocrystals and their Application for Solar Water Evaporation , 2017 .

[31]  Xiaozhen Hu,et al.  Tailoring Graphene Oxide‐Based Aerogels for Efficient Solar Steam Generation under One Sun , 2017, Advanced materials.

[32]  Tianquan Lin,et al.  Controllable reduced black titania with enhanced photoelectrochemical water splitting performance. , 2017, Dalton transactions.

[33]  Fuqiang Huang,et al.  Constructing Black Titania with Unique Nanocage Structure for Solar Desalination. , 2016, ACS applied materials & interfaces.

[34]  Tianquan Lin,et al.  Progress in Black Titania: A New Material for Advanced Photocatalysis , 2016 .

[35]  Wenshan Cai,et al.  3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination , 2016, Nature Photonics.

[36]  Guowei Yang,et al.  Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. , 2016, Nanoscale.

[37]  Xiaodong Chen,et al.  Visible-Light-Induced Photoredox Catalysis of Dye-Sensitized Titanium Dioxide: Selective Aerobic Oxidation of Organic Sulfides. , 2016, Angewandte Chemie.

[38]  Xiaobo Ji,et al.  Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies. , 2016, ACS applied materials & interfaces.

[39]  H. Ghasemi,et al.  Flexible artificially-networked structure for ambient/high pressure solar steam generation , 2016 .

[40]  Wounjhang Park,et al.  Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation , 2015, Nature Communications.

[41]  Xiaobo Ji,et al.  Ti3+ Self‐Doped Dark Rutile TiO2 Ultrafine Nanorods with Durable High‐Rate Capability for Lithium‐Ion Batteries , 2015 .

[42]  Moyuan Cao,et al.  Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface. , 2015, ACS applied materials & interfaces.

[43]  I. Bezverkhyy,et al.  ZnO nanorods covered with a TiO2 layer: simple sol–gel preparation, and optical, photocatalytic and photoelectrochemical properties , 2015 .

[44]  Lei Liu,et al.  Black titanium dioxide (TiO2) nanomaterials. , 2015, Chemical Society reviews.

[45]  Seeram Ramakrishna,et al.  Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting. , 2015, ACS nano.

[46]  Ralph G Nuzzo,et al.  Black silicon solar thin-film microcells integrating top nanocone structures for broadband and omnidirectional light-trapping , 2014, Nanotechnology.

[47]  B. Ellis,et al.  Three‐Dimensional Self‐Supported Metal Oxides for Advanced Energy Storage , 2014, Advanced materials.

[48]  J. Ho,et al.  Light Management with Nanostructures for Optoelectronic Devices. , 2014, The journal of physical chemistry letters.

[49]  B. Pan,et al.  Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts , 2014 .

[50]  Jian Lu,et al.  Low-temperature fabrication of brown TiO2 with enhanced photocatalytic activities under visible light. , 2013, Chemical communications.

[51]  B. Yi,et al.  Highly stable ternary tin-palladium-platinum catalysts supported on hydrogenated TiO2 nanotube arrays for fuel cells. , 2013, Nanoscale.

[52]  Ricardo Ruiz,et al.  Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. , 2013, Nano letters.

[53]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[54]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[55]  Nicolas C. Pégard,et al.  Wrinkles and deep folds as photonic structures in photovoltaics , 2012, Nature Photonics.

[56]  Teng Zhai,et al.  Hydrogenated TiO2 nanotube arrays for supercapacitors. , 2012, Nano letters.

[57]  Franz Faupel,et al.  Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials , 2011, Advanced materials.

[58]  Matthew G. Panthani,et al.  Copper selenide nanocrystals for photothermal therapy. , 2011, Nano letters.

[59]  X. H. Liu,et al.  Structural coloration and photonic pseudogap in natural random close-packing photonic structures. , 2010, Optics express.

[60]  M. Hutley,et al.  Reduction of Lens Reflexion by the “Moth Eye” Principle , 1973, Nature.

[61]  S. Darling,et al.  Solar Steam: Chinese Ink: A Powerful Photothermal Material for Solar Steam Generation (Adv. Mater. Interfaces 1/2019) , 2019, Advanced Materials Interfaces.

[62]  Xiaodong Chen,et al.  High‐Performance Photothermal Conversion of Narrow‐Bandgap Ti2O3 Nanoparticles , 2017, Advanced materials.

[63]  Di Zhang,et al.  Bioinspired Engineering of Thermal Materials , 2015, Advanced materials.

[64]  Constantin R. Simovski,et al.  Topological Darkness in Self‐Assembled Plasmonic Metamaterials , 2014, Advanced materials.