Critical avalanches and subsampling in map-based neural networks coupled with noisy synapses.

Many different kinds of noise are experimentally observed in the brain. Among them, we study a model of noisy chemical synapse and obtain critical avalanches for the spatiotemporal activity of the neural network. Neurons and synapses are modeled by dynamical maps. We discuss the relevant neuronal and synaptic properties to achieve the critical state. We verify that networks of functionally excitable neurons with fast synapses present power-law avalanches, due to rebound spiking dynamics. We also discuss the measuring of neuronal avalanches by subsampling our data, shedding light on the experimental search for self-organized criticality in neural networks.

[1]  E. Andrade Contemporary Physics , 1945, Nature.

[2]  P. Peretto An introduction to the modeling of neural networks , 1992 .

[3]  L. Abbott,et al.  A simple growth model constructs critical avalanche networks. , 2007, Progress in brain research.

[4]  John M. Beggs,et al.  Universal critical dynamics in high resolution neuronal avalanche data. , 2012, Physical review letters.

[5]  Anthony N. Burkitt,et al.  A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input , 2006, Biological Cybernetics.

[6]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[7]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[8]  M. Sanjuán,et al.  Map-based models in neuronal dynamics , 2011 .

[9]  Woodrow L. Shew,et al.  The Functional Benefits of Criticality in the Cortex , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[10]  Jun Ma,et al.  Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels , 2013, Commun. Nonlinear Sci. Numer. Simul..

[11]  G A Cecchi,et al.  Noise-induced memory in extended excitable systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[13]  G. Ascoli,et al.  Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. , 2009, Journal of neurophysiology.

[14]  C. Monterola,et al.  Background activity drives criticality of neuronal avalanches , 2007 .

[15]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  Osame Kinouchi,et al.  MODELING NEURONS BY SIMPLE MAPS , 1996 .

[18]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[19]  Juan Carlos López,et al.  Computational neuroscience: Quantifying synaptic efficacy , 2002, Nature Reviews Neuroscience.

[20]  D. Plenz,et al.  Balance between excitation and inhibition controls the temporal organization of neuronal avalanches. , 2012, Physical review letters.

[21]  John M. Beggs,et al.  Being Critical of Criticality in the Brain , 2012, Front. Physio..

[22]  Woodrow L. Shew,et al.  Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality , 2009, The Journal of Neuroscience.

[23]  Usher,et al.  Dynamic pattern formation leads to 1/f noise in neural populations. , 1995, Physical review letters.

[24]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[25]  Kenneth Hui,et al.  Random-field mechanism in random-bond multicritical systems. , 1989 .

[26]  L. de Arcangelis,et al.  Self-organized criticality model for brain plasticity. , 2006, Physical review letters.

[27]  Steven J. Schiff,et al.  Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. , 2007 .

[28]  Viola Priesemann,et al.  Subsampling effects in neuronal avalanche distributions recorded in vivo , 2009, BMC Neuroscience.

[29]  K. Linkenkaer-Hansen,et al.  Critical-State Dynamics of Avalanches and Oscillations Jointly Emerge from Balanced Excitation/Inhibition in Neuronal Networks , 2012, The Journal of Neuroscience.

[30]  K. Linkenkaer-Hansen,et al.  Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations , 2008, Human brain mapping.

[31]  Antônio C. Roque-da-Silva,et al.  A minimal model for excitable and bursting elements , 2001, Neurocomputing.

[32]  B. Fernandez,et al.  Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems , 2008 .

[33]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[34]  M. A. Muñoz,et al.  Self-organization without conservation: are neuronal avalanches generically critical? , 2010, 1001.3256.

[35]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[36]  D. Chialvo,et al.  Ising-like dynamics in large-scale functional brain networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Erik De Schutter,et al.  Computational Modeling Methods for Neuroscientists , 2009 .

[38]  B. Katz,et al.  A study of synaptic transmission in the absence of nerve impulses , 1967, The Journal of physiology.

[39]  Stassinopoulos,et al.  Democratic reinforcement: A principle for brain function. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  O. Kinouchi,et al.  Stability diagrams for bursting neurons modeled by three-variable maps , 2004, q-bio/0402031.

[41]  M. Nicolelis,et al.  Spike Avalanches Exhibit Universal Dynamics across the Sleep-Wake Cycle , 2010, PloS one.

[42]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[43]  O. Kinouchi,et al.  A brief history of excitable map-based neurons and neural networks , 2013, Journal of Neuroscience Methods.

[44]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[45]  Idan Segev,et al.  The information efficacy of a synapse , 2002, Nature Neuroscience.

[46]  J. Hopfield,et al.  Earthquake cycles and neural reverberations: Collective oscillations in systems with pulse-coupled threshold elements. , 1995, Physical review letters.

[47]  Gerhard Werner,et al.  Fractals in the Nervous System: Conceptual Implications for Theoretical Neuroscience , 2009, Front. Physiology.

[48]  John M Beggs,et al.  Critical branching captures activity in living neural networks and maximizes the number of metastable States. , 2005, Physical review letters.

[49]  Van den Broeck C,et al.  Noise-induced nonequilibrium phase transition. , 1994, Physical review letters.