L21 ordering of Co2FeSn thin films promoted by high-temperature annealing

We report the effect of annealing on the crystalline ordering and physical properties in thin films of a nodal line semimetal candidate L21-type Co2FeSn. The Co–Fe–Sn films with a composition of Co:Fe:Sn ∼ 2:1:1 were deposited on MgO(001) substrates at a substrate temperature of 150 °C by radio-frequency magnetron sputtering. The as-deposited film showed x-ray diffraction patterns corresponding to the B2 ordering. Annealing at 600 and 700 °C after the deposition resulted in the appearance of the (111) diffraction peak, which is characteristic of the L21 ordering. Although anomalous Hall conductivity and transverse thermoelectric conductivity decreased from those of the as-deposited film with the annealing-induced L21 ordering, the low anomalous Hall conductivity of the 700 °C-annealed film was consistent with the theoretically estimated low value. These results show the significant influence of crystalline ordering on the electrical and thermoelectric transport properties. The annealing process is beneficial for studying the exotic physics arising from topological band features in the L21-ordered Co2FeSn thin films.

[1]  T. Seki,et al.  Strain‐Induced Large Anomalous Nernst Effect in Polycrystalline Co2MnGa/AlN Multilayers , 2022, Advanced Electronic Materials.

[2]  S. Giri,et al.  Transport properties of Heusler compounds and alloys , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Weinan Zhou,et al.  Transverse thermoelectric generation using magnetic materials , 2021, 2102.04183.

[4]  T. Seki,et al.  Enhancement of the anomalous Nernst effect in Ni/Pt superlattices , 2020, 2009.11006.

[5]  T. Higo,et al.  Magnetic and transport properties of amorphous, B2 and L21 Co2MnGa thin films , 2020 .

[6]  Weinan Zhou,et al.  Heat flux sensing by anomalous Nernst effect in Fe–Al thin films on a flexible substrate , 2020, Applied Physics Express.

[7]  Kamran Behnia,et al.  Anomalous transverse response of Co2MnGa and universality of the room-temperature αijA/σijA ratio across topological magnets , 2020, 2001.10264.

[8]  C. Felser,et al.  Giant anomalous Hall and Nernst effect in magnetic cubic Heusler compounds , 2020, npj Computational Materials.

[9]  Z. Wen,et al.  Structural-order dependence of anomalous Hall effect in Co2MnGa topological semimetal thin films , 2019 .

[10]  H. Nakayama,et al.  Mechanism of strong enhancement of anomalous Nernst effect in Fe by Ga substitution , 2019 .

[11]  A. Sakuma,et al.  Fermi level tuning and atomic ordering induced giant anomalous Nernst effect in Co2MnAl1-xSix Heusler alloy , 2019, 1911.07741.

[12]  Binghai Yan,et al.  Giant room temperature anomalous Hall effect and magnetically tuned topology in the ferromagnetic Weyl semimetal Co2MnAl , 2019, 1910.10378.

[13]  N. Tian,et al.  Large and temperature-stable anomalous Nernst effect under a favorable out-of-plane thermal gradient in the epitaxial Heusler spin gapless-like CoFeMnSi thin film , 2019, Materials Research Express.

[14]  A. Thomas,et al.  Thickness dependence of the anomalous Nernst effect and the Mott relation of Weyl semimetal Co2MnGa thin films , 2019, Physical Review B.

[15]  J. Kawasaki Heusler interfaces—Opportunities beyond spintronics? , 2019, APL Materials.

[16]  C. Felser,et al.  Anomalous Hall effect in thin films of the topological semimetal Co$_2$MnGa , 2019, 1904.11410.

[17]  T. Seki,et al.  Fe-Sn nanocrystalline films for flexible magnetic sensors with high thermal stability , 2019, Scientific Reports.

[18]  C. Felser,et al.  Characterization of topological band structures away from the Fermi level by the anomalous Nernst effect , 2018, Physical Review B.

[19]  R. Arita,et al.  Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal , 2018, Nature Physics.

[20]  Sarah J. Watzman,et al.  Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa , 2018, NPG Asia Materials.

[21]  C. Felser,et al.  Heusler, Weyl and Berry , 2018, Nature Reviews Materials.

[22]  J. A. Logan,et al.  Epitaxial Heusler superlattice Co2MnAl/Fe2MnAl with perpendicular magnetic anisotropy and termination-dependent half-metallicity , 2018, 1801.02787.

[23]  G. Fecher,et al.  From Colossal to Zero: Controlling the Anomalous Hall Effect in Magnetic Heusler Compounds via Berry Curvature Design , 2017, Physical Review X.

[24]  I. D. Marco,et al.  Half-metallicity and magnetism in the Co2MnAl/CoMnVAl heterostructure , 2017, 1709.10464.

[25]  Xiaodi Yang,et al.  Correlations Between Structural and Magnetic Properties of Co2FeSi Heusler-Alloy Thin Films , 2017 .

[26]  G. Reiss,et al.  Perpendicular magnetic anisotropy of TiN buffered Co2FeAl/MgO bilayers , 2017 .

[27]  X. Dai,et al.  Topological nodal line semimetals , 2016, 1609.05414.

[28]  G. Fecher,et al.  Basics and prospective of magnetic Heusler compounds , 2015 .

[29]  Atsufumi Hirohata,et al.  Future perspectives for spintronic devices , 2014 .

[30]  Kazuhiro Hono,et al.  Enhancement of giant magnetoresistance by L21 ordering in Co2Fe(Ge0.5Ga0.5) Heusler alloy current-perpendicular-to-plane pseudo spin valves , 2013 .

[31]  R. Budhani,et al.  Structural ordering driven anisotropic magnetoresistance, anomalous Hall resistance, and its topological overtones in full-Heusler Co2MnSi thin films , 2013, 1305.3453.

[32]  D. Chiba,et al.  Control of magnetism in Co by an electric field , 2013 .

[33]  G. Guo,et al.  High spin polarization of the anomalous Hall current in Co-based Heusler compounds , 2013, 1303.0509.

[34]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[35]  L. Balents,et al.  Topological nodal semimetals , 2011, 1110.1089.

[36]  M. Hehn,et al.  Magnetic and structural anisotropies of Co 2 FeAl Heusler alloy epitaxial thin films , 2011, 1108.4043.

[37]  G. Jakob,et al.  Influence of disorder on anomalous Hall effect for Heusler compounds , 2011 .

[38]  Burkard Hillebrands,et al.  Magnetic anisotropy, exchange and damping in cobalt-based full-Heusler compounds: an experimental review , 2010 .

[39]  M. Miyao,et al.  Epitaxial growth of a full-Heusler alloy Co2FeSi on silicon by low-temperature molecular beam epitaxy , 2009, 0906.2840.

[40]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[41]  Satoshi Sugahara,et al.  Analysis of L21-ordering in full-Heusler Co2FeSi alloy thin films formed by rapid thermal annealing , 2009, 0902.1438.

[42]  Koichiro Inomata,et al.  Highly spin-polarized materials and devices for spintronics∗ , 2008, Science and technology of advanced materials.

[43]  N. Tezuka,et al.  Tunnel magnetoresistance for junctions with epitaxial full-Heusler Co2FeAl0.5Si0.5 electrodes with B2 and L21 structures , 2006 .

[44]  T. Marukame,et al.  Fabrication of fully epitaxial magnetic tunnel junctions using cobalt-based full-Heusler alloy thin film and their tunnel magnetoresistance characteristics , 2006 .

[45]  H. Kubota,et al.  Large tunnel magnetoresistance in magnetic tunnel junctions using Co2MnX (X = Al, Si) Heusler alloys , 2006 .

[46]  Hitoshi Kubota,et al.  Huge Spin-Polarization of L21-Ordered Co2MnSi Epitaxial Heusler Alloy Film , 2005 .

[47]  N. Mott,et al.  Observation of Anderson Localization in an Electron Gas , 1969 .

[48]  C. Felser,et al.  Topological thermoelectrics , 2020, APL Materials.

[49]  P. J. Webster,et al.  A neutron diffraction and magnetization study of Heusler alloys containing Co and Zr, Hf, V or Nb , 1974 .