Solving a set of global optimization problems by the parallel technique with uniform convergence

In this paper, we consider solving a set of global optimization problems in parallel. The proposed novel algorithm provides uniform convergence to the set of solutions for all problems treated simultaneously. The current accuracy for each particular solution is estimated by the difference in each coordinate from the point of global decision. The main statement is given in the corresponding theorem. For the sake of illustration some computational results with hundreds of multidimensional global problems are provided.

[1]  Roman G. Strongin Global Optimization Using Space Filling , 2009, Encyclopedia of Optimization.

[2]  Julius Zilinskas,et al.  Globally-biased Disimpl algorithm for expensive global optimization , 2014, Journal of Global Optimization.

[3]  Yaroslav D. Sergeyev,et al.  Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization , 2003, TOMS.

[4]  Julius Žilinskas,et al.  Branch and bound with simplicial partitions for global optimization , 2008 .

[5]  Roman G. Strongin,et al.  Global Optimization: Fractal Approach and Non-redundant Parallelism , 2003, J. Glob. Optim..

[6]  V. U. Malkova,et al.  Parallel global optimization of functions of several variables , 2009 .

[7]  Mikhail Posypkin,et al.  A deterministic approach to global box-constrained optimization , 2012, Optimization Letters.

[8]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[9]  Yaroslav D. Sergeyev,et al.  Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints , 2001, J. Glob. Optim..

[10]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[11]  Julius Zilinskas,et al.  Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds , 2010, Optim. Lett..

[12]  Yaroslav D. Sergeyev,et al.  Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..

[13]  Julius Zilinskas,et al.  Parallel branch and bound for global optimization with combination of Lipschitz bounds , 2011, Optim. Methods Softw..

[14]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[15]  Clara Pizzuti,et al.  Local tuning and partition strategies for diagonal GO methods , 2003, Numerische Mathematik.

[16]  Masha Sosonkina,et al.  Design and implementation of a massively parallel version of DIRECT , 2008, Comput. Optim. Appl..

[17]  Roman G. Strongin,et al.  Parallel computing for globally optimal decision making on cluster systems , 2005, Future Gener. Comput. Syst..

[18]  Donald R. Jones,et al.  Direct Global Optimization Algorithm , 2009, Encyclopedia of Optimization.

[19]  Julius Zilinskas,et al.  Investigation of selection strategies in parallel branch and bound algorithm with simplicial partitions , 2010, 2010 IEEE International Conference On Cluster Computing Workshops and Posters (CLUSTER WORKSHOPS).

[20]  Vladimir A. Grishagin,et al.  Parallel Characteristical Algorithms for Solving Problems of Global Optimization , 1997, J. Glob. Optim..

[21]  R. G. Strongin,et al.  A global optimization technique with an adaptive order of checking for constraints , 2002 .

[22]  Roman G. Strongin,et al.  Introduction to Global Optimization Exploiting Space-Filling Curves , 2013 .

[23]  Antanas Zilinskas On the worst-case optimal multi-objective global optimization , 2013, Optim. Lett..

[24]  Victor P. Gergel,et al.  Parallel global optimization on GPU , 2016, Journal of Global Optimization.

[25]  V. A. Grishagin,et al.  Sequential and parallel algorithms for global optimization , 1994 .