K+ binding and proton redistribution in the E2P state of the H+, K+-ATPase

The H+, K+-ATPase (HKA) uses ATP to pump protons into the gastric lumen against a million-fold proton concentration gradient while counter-transporting K+ from the lumen. The mechanism of release of a proton into a highly acidic stomach environment, and the subsequent binding of a K+ ion necessitates a network of protonable residues and dynamically changing protonation states in the cation binding pocket dominated by five acidic amino acid residues E343, E795, E820, D824, and D942. We perform molecular dynamics simulations of spontaneous K+ binding to all possible protonation combinations of the acidic amino acids and carry out free energy calculations to determine the optimal protonation state of the luminal-open E2P state of the pump which is ready to bind luminal K+. A dynamic pKa correlation analysis reveals the likelihood of proton transfer events within the cation binding pocket. In agreement with in-vitro measurements, we find that E795 is likely to be protonated, and that E820 is at the center of the proton transfer network in the luminal-open E2P state. The acidic residues D942 and D824 are likely to remain protonated, and the proton redistribution occurs predominantly amongst the glutamate residues exposed to the lumen. The analysis also shows that a lower number of K+ ions bind at lower pH, modeled by a higher number of protons in the cation binding pocket, in agreement with the ‘transport stoichiometry variation’ hypothesis.

[1]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[2]  S. Kume,et al.  Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. , 1972, The Journal of biological chemistry.

[3]  Hiromi Nomura,et al.  Structural changes in the calcium pump accompanying the dissociation of calcium , 2002, Nature.

[4]  F. Bezanilla,et al.  Mechanism of potassium ion uptake by the Na+/K+-ATPase , 2015, Nature Communications.

[5]  G. Sachs,et al.  The gastric [H,K]ATPase:H+/ATP stoichiometry. , 1982, The Journal of biological chemistry.

[6]  B. Roux,et al.  The selectivity of the Na+/K+-pump is controlled by binding site protonation and self-correcting occlusion , 2016, eLife.

[7]  P. Nissen,et al.  Crystal structure of the high-affinity Na+,K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site , 2013, Proceedings of the National Academy of Sciences.

[8]  G. Sachs,et al.  Mutational analysis of the K+-competitive inhibitor site of gastric H,K-ATPase. , 2001, Biochemistry.

[9]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[10]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[11]  Alexander D. MacKerell,et al.  CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field , 2015, Journal of chemical theory and computation.

[12]  A. Sali,et al.  Modeling of loops in protein structures , 2000, Protein science : a publication of the Protein Society.

[13]  R. Albers Biochemical aspects of active transport. , 1967, Annual review of biochemistry.

[14]  H. Khandelia,et al.  Glutamate Water Gates in the Ion Binding Pocket of Na+ Bound Na+, K+-ATPase , 2017, Scientific Reports.

[15]  B. Roux,et al.  Energetics of ion conduction through the gramicidin channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Sansom,et al.  Simulations of anion transport through OprP reveal the molecular basis for high affinity and selectivity for phosphate , 2009, Proceedings of the National Academy of Sciences.

[17]  P. Nissen,et al.  Neurological disease mutations compromise a C-terminal ion pathway in the Na+/K+-ATPase , 2010, Nature.

[18]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[19]  Thomas Friedrich,et al.  Cryo-EM structure of gastric H+,K+-ATPase with a single occupied cation-binding site , 2012, Proceedings of the National Academy of Sciences.

[20]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[21]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[22]  David L. Stokes,et al.  Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution , 1998, Nature.

[23]  H. Khandelia,et al.  Molecular mechanism of Na(+),K(+)-ATPase malfunction in mutations characteristic of adrenal hypertension. , 2014, Biochemistry.

[24]  E. Lindahl,et al.  Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models. , 2010, Journal of chemical theory and computation.

[25]  G. Sachs,et al.  The gastric HK-ATPase: structure, function, and inhibition , 2008, Pflügers Archiv - European Journal of Physiology.

[26]  C. Toyoshima,et al.  Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state , 2013, Nature.

[27]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[28]  Hiroshi Suzuki,et al.  Crystal structures of the gastric proton pump , 2018, Nature.

[29]  P. Nissen,et al.  Crystal structure of the sodium–potassium pump , 2007, Nature.

[30]  Bernard R Brooks,et al.  Self‐guided Langevin dynamics study of regulatory interactions in NtrC , 2009, Proteins.

[31]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[32]  Vincent A. Voelz,et al.  Molecular simulations and free-energy calculations suggest conformation-dependent anion binding to a cytoplasmic site as a mechanism for Na+/K+-ATPase ion selectivity , 2017, The Journal of Biological Chemistry.

[33]  Sunhwan Jo,et al.  CHARMM‐GUI Membrane Builder toward realistic biological membrane simulations , 2014, J. Comput. Chem..

[34]  B. Roux,et al.  Computations of standard binding free energies with molecular dynamics simulations. , 2009, The journal of physical chemistry. B.

[35]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[36]  H. Swarts,et al.  K+-independent Gastric H+,K+-ATPase Activity , 2001, The Journal of Biological Chemistry.

[37]  E. Krieger,et al.  A Conformation-specific Interhelical Salt Bridge in the K+ Binding Site of Gastric H,K-ATPase* , 2004, Journal of Biological Chemistry.

[38]  P. Nissen,et al.  P-type ATPases. , 2011, Annual review of biophysics.

[39]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[40]  Toby W Allen,et al.  Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. , 2006, Biophysical chemistry.

[41]  H. Swarts,et al.  Constitutive activation of gastric H+,K+‐ATPase by a single mutation , 1998, The EMBO journal.

[42]  Bert L. de Groot,et al.  g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates , 2010 .

[43]  Stefano Piana,et al.  Refinement of protein structure homology models via long, all‐atom molecular dynamics simulations , 2012, Proteins.

[44]  C. Toyoshima,et al.  Crystal structure of the sodium–potassium pump at 2.4 Å resolution , 2009, Nature.

[45]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[46]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[47]  G. Sachs,et al.  An ion gating mechanism of gastric H,K-ATPase based on molecular dynamics simulations. , 2008, Biophysical journal.

[48]  S. Kuyucak,et al.  Free energy simulations of single and double ion occupancy in gramicidin A. , 2007, The Journal of chemical physics.

[49]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[50]  P. Nissen,et al.  Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes. , 2011, Nature communications.

[51]  C. Gatto,et al.  Intracellular Requirements for Passive Proton Transport through the Na+,K+-ATPase. , 2016, Biophysical journal.

[52]  K. Tani,et al.  Inter‐subunit interaction of gastric H+,K+‐ATPase prevents reverse reaction of the transport cycle , 2009, The EMBO journal.

[53]  J. G. Forte,et al.  H+/ATP stoichiometry for the gastric (K++H+)-ATPase , 2005, The Journal of Membrane Biology.

[54]  S. Asano,et al.  Mutational Analysis of Putative SCH 28080 Binding Sites of the Gastric H+,K+-ATPase* , 1997, The Journal of Biological Chemistry.

[55]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[56]  K. Munson Analysis of the Gastric H,K ATPase for Ion pathways and Inhibitor Binding Sites , 2007, Biochemistry.

[57]  G. Sachs,et al.  Identification of an extracytoplasmic region of H+,K(+)-ATPase labeled by a K(+)-competitive photoaffinity inhibitor. , 1991, The Journal of biological chemistry.

[58]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[59]  Kazutoshi Tani,et al.  Conformational rearrangement of gastric H+,K+-ATPase induced by an acid suppressant , 2011, Nature communications.

[60]  Willy Wriggers,et al.  Conventions and workflows for using Situs , 2012, Acta crystallographica. Section D, Biological crystallography.

[61]  A. P. Einholm,et al.  Arginine substitution of a cysteine in transmembrane helix M8 converts Na+,K+-ATPase to an electroneutral pump similar to H+,K+-ATPase , 2016, Proceedings of the National Academy of Sciences.

[62]  F. Bezanilla,et al.  The dynamic relationships between the three events that release individual Na+ ions from the Na+/K+-ATPase , 2012, Nature Communications.

[63]  S. Kume,et al.  Flexibility of an Active Center in Sodium-Plus-Potassium Adenosine Triphosphatase , 1969, The Journal of general physiology.

[64]  C. Toyoshima,et al.  Homology modeling of the cation binding sites of Na+K+-ATPase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[66]  G. Sachs,et al.  Inhibitor and ion binding sites on the gastric H,K-ATPase. , 2005, Biochemistry.

[67]  T. Friedrich,et al.  Deceleration of the E1P-E2P Transition and Ion Transport by Mutation of Potentially Salt Bridge-forming Residues Lys-791 and Glu-820 in Gastric H+/K+-ATPase* , 2010, The Journal of Biological Chemistry.

[68]  The cryo-EM structure of gastric H+,K+-ATPase with bound BYK99, a high-affinity member of K+-competitive, imidazo[1,2-a]pyridine inhibitors , 2017, Scientific Reports.

[69]  Jan H. Jensen,et al.  Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. , 2011, Journal of chemical theory and computation.

[70]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[71]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[72]  J. P. Grossman,et al.  Biomolecular simulation: a computational microscope for molecular biology. , 2012, Annual review of biophysics.

[73]  Andrej Sali,et al.  Comparative Protein Structure Modeling Using MODELLER , 2014, Current protocols in bioinformatics.

[74]  Mikael Olsson Struct , 2019, C# 8 Quick Syntax Reference.

[75]  Jan H. Jensen,et al.  Very fast empirical prediction and rationalization of protein pKa values , 2005, Proteins.

[76]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[77]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[78]  A. Sali,et al.  Comparative protein structure modeling of genes and genomes. , 2000, Annual review of biophysics and biomolecular structure.