Reasoning About Knowledge In Linear Logic: Modalities and Complexity

In this paper, we briefly argue, following ideas set forth by Jacques Dubucs, for a radical version of anti-realism and claim that it leads to the adoption of a ‘substructural’ logic, linear logic. We further argue that, in order to avoids problems such as that of ‘omniscience’, one should develop an epistemic linear logic, which would be weak enough so that the agents could still be described as omniscient, while this would not be problematic anymore. We then examine two possible ways to develop an epistemic linear logic, and eliminate one. We conclude on some remarks about complexity. The paper contains a coding in Coq of fragments of modal linear logic and a proof of the ‘wise men’ puzzle.

[1]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[2]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[3]  J. Dubucs,et al.  Radical Anti-Realism and Substructural Logics , 2003 .

[4]  Jaakko Hintikka,et al.  Knowledge and Belief: An Introduction to the Logic of the Two Notions. , 1965 .

[5]  Greg Restall,et al.  An Introduction to Substructural Logics , 2000 .

[6]  Joseph Y. Halpern Reasoning About Knowledge: An Overview , 1986, TARK.

[7]  Rolf A. Eberle A logic of believing, knowing, and inferring , 1974, Synthese.

[8]  Jean-Yves Girard,et al.  On the meaning of logical rules I: syntax vs. semantics , 1998 .

[9]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[10]  K. Konolige A deduction model of belief , 1986 .

[11]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[12]  Veikko Rantala,et al.  Urn models: A new kind of non-standard model for first-order logic , 1975, J. Philos. Log..

[13]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[14]  H. Wansing Kosta Dosen and Peter Schroeder-Heister (eds.), substructural logics , 1996 .

[15]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[16]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[17]  N. Cocchiarella,et al.  Situations and Attitudes. , 1986 .

[18]  Gilles Dowek,et al.  Proceedings of the 12th International Conference on Theorem Proving in Higher Order Logics , 1999 .

[19]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[20]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[21]  Robert L. Constable,et al.  Decidability Extracted: Synthesizing "Correct-by-Construction" Decision Procedures form Constructive Proofs , 1998 .

[22]  J. Hintikka,et al.  Game-Theoretical Semantics , 1997 .

[23]  Avron Arnon The semantics and proof theory of linear logic , 1988 .

[24]  Hector J. Levesque,et al.  A Logic of Implicit and Explicit Belief , 1984, AAAI.

[25]  Jean-Yves Girard On the meaning of logical rules I : Syntax versus semantics , 1999 .

[26]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[27]  Hugo Herbelin,et al.  The Coq proof assistant : reference manual, version 6.1 , 1997 .

[28]  Rohit Parikh Knowledge and the Problem of Logical Omniscience , 1987, ISMIS.

[29]  Amy P. Felty Two-Level Meta-reasoning in Coq , 2002, TPHOLs.

[30]  Rohit Parikh,et al.  Logical Omniscience , 1994, LCC.

[31]  H. Levesque Logic and the complexity of reasoning , 1988 .

[32]  Valeria de Paiva,et al.  Cut-Elimination for Full Intuitionistic Linear Logic , 1996 .

[33]  Kazuo Matsumoto,et al.  Gentzen method in modal calculi. II , 1957 .

[34]  Jean-Yves Girard,et al.  Linear logic: its syntax and semantics , 1995 .

[35]  Jacques Dubucs,et al.  Feasibility In Logic , 2002, Synthese.

[36]  J. Dubucs Logique, effectivité et faisabilité , 1997, Dialogue.

[37]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[38]  Alessandra Carbone,et al.  Making proofs without Modus Ponens: An introduction to the combinatorics and complexity of cut elimination , 1996 .

[39]  Jaakko Hintikka,et al.  Impossible possible worlds vindicated , 1975, J. Philos. Log..

[40]  J. Hintikka Knowledge and belief , 1962 .

[41]  James F. Power,et al.  Working with Linear Logic in Coq , 1999 .

[42]  Christine Paulin-Mohring,et al.  The coq proof assistant reference manual , 2000 .

[43]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[44]  J. Fenstad Proceedings of the Second Scandinavian Logic Symposium , 1971 .

[45]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[46]  C. Wright Realism, Meaning, And Truth , 1987 .

[47]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[48]  Akinori Yonezawa,et al.  Distributed Concurrent Linear Logic Programming , 1999, Theor. Comput. Sci..

[49]  Daniel Leivant,et al.  Logic and Computational Complexity , 1995, Lecture Notes in Computer Science.