A 6-Bit, 29.56 fJ/Conv-Step, Voltage Scalable Flash-SAR Hybrid ADC in 28 nm CMOS

This paper presents the design of a 6-bit scalable hybrid flash SAR (successive approximation register) analog-to-digital converter (ADC). The ADC has a scalable architecture because of the usage of an inverter based comparator. The conversion time is reduced by adopting a 3-bit/cycle approach. A segmented split-capacitor charge redistribution digital-to-analog converter (CDAC) is used to reduce the DAC settling time and the design area. The ADC is implemented in a 28 nm CMOS technology with the scalable VDD from 0.5 V to 1 V. The ADC operates from 10 MHz to 1.1 GHz for a VDD of 0.5 V to 1 V respectively. The design shows 47.7 fJ/conv-step and 29.56 fJ/conv-step for VDD of 0.9 V and 0.6 V respectively.

[1]  Sandipan Kundu,et al.  A 1.2 V 2.64 GS/s 8bit 39 mW skew-tolerant time-interleaved SAR ADC in 40 nm digital LP CMOS for 60 GHz WLAN , 2014, Proceedings of the IEEE 2014 Custom Integrated Circuits Conference.

[2]  Qi Wei,et al.  A 6-bit 320-MS/s 2-bit/cycle SAR ADC with tri-level charge redistribution , 2015, 2015 IEEE 9th International Conference on Anti-counterfeiting, Security, and Identification (ASID).

[3]  W. Black,et al.  Time interleaved converter arrays , 1980, 1980 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[4]  Yung-Hui Chung,et al.  A 6-bit 1.6-GS/s domino-SAR ADC in 55nm CMOS , 2017, 2017 International SoC Design Conference (ISOCC).

[5]  Khosrow Hajsadeghi,et al.  A low-power comparator-reduced flash ADC using dynamic comparators , 2017, 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS).

[6]  B.P. Ginsburg,et al.  500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC , 2007, IEEE Journal of Solid-State Circuits.

[7]  Nan Sun,et al.  A 10-b 2b/cycle 300MS/s SAR ADC with a single differential DAC in 40nm CMOS , 2017, 2017 IEEE Custom Integrated Circuits Conference (CICC).

[8]  Pedro M. Figueiredo,et al.  Kickback noise reduction techniques for CMOS latched comparators , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  Brian P. Ginsburg,et al.  An energy-efficient charge recycling approach for a SAR converter with capacitive DAC , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[10]  Franco Maloberti,et al.  An 8-b 400-MS/s 2-b-Per-Cycle SAR ADC With Resistive DAC , 2012, IEEE Journal of Solid-State Circuits.

[11]  Ramachandra Achar,et al.  Efficient Jitter Analysis for a Chain of CMOS Inverters , 2020, IEEE Transactions on Electromagnetic Compatibility.

[12]  Chaoming Zhang,et al.  A 5-GS/s 10-b 76-mW Time-Interleaved SAR ADC in 28 nm CMOS , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  Shouli Yan,et al.  A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13 µm CMOS , 2009, IEEE J. Solid State Circuits.

[14]  Franco Maloberti,et al.  An 8-bit 0.7-GS/s single channel flash-SAR ADC in 65-nm CMOS technology , 2016, ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference.

[15]  Sanroku Tsukamoto,et al.  Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC , 2010 .

[16]  T. Sekino,et al.  A monolithic 8b two-step parallel ADC without DAC and subtractor circuits , 1982 .

[17]  Patrick Chiang,et al.  Single-channel, 1.25-GS/s, 6-bit, loop-unrolled asynchronous SAR-ADC in 40nm-CMOS , 2010, IEEE Custom Integrated Circuits Conference 2010.

[18]  Franco Maloberti,et al.  Split-SAR ADCs: Improved Linearity With Power and Speed Optimization , 2014, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[19]  Yusuf Leblebici,et al.  A 3.1 mW 8b 1.2 GS/s Single-Channel Asynchronous SAR ADC With Alternate Comparators for Enhanced Speed in 32 nm Digital SOI CMOS , 2013, IEEE Journal of Solid-State Circuits.

[20]  Shouri Chatterjee,et al.  11 GHz UGBW Op-amp with feed-forward compensation technique , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[21]  M. Nakamura,et al.  An 8 bit, 100 ms/s flash ADC , 1984, IEEE Journal of Solid-State Circuits.

[22]  Zhou Zhao,et al.  Six-bit, reusable comparator stage-based asynchronous binary-search SAR ADC using smart switching network , 2018, IET Circuits Devices Syst..

[23]  Yuanjin Zheng,et al.  A High-Speed 2-bit/Cycle SAR ADC With Time-Domain Quantization , 2018, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[24]  Dieter Fuhrmann,et al.  Logical Effort Designing Fast Cmos Circuits , 2016 .

[25]  Behzad Razavi,et al.  The StrongARM Latch [A Circuit for All Seasons] , 2015, IEEE Solid-State Circuits Magazine.

[26]  Sandipan Kundu,et al.  A 1.2 V 2.64 GS/s 8 bit 39 mW Skew-Tolerant Time-interleaved SAR ADC in 40 nm Digital LP CMOS for 60 GHz WLAN , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  P. Kinget,et al.  0.5-V analog circuit techniques and their application in OTA and filter design , 2005, IEEE Journal of Solid-State Circuits.