Stability of dendritic spines and synaptic contacts is controlled by αN-catenin

[1]  R. Malenka,et al.  β-catenin is critical for dendritic morphogenesis , 2003, Nature Neuroscience.

[2]  A. Matus,et al.  Activity-induced targeting of profilin and stabilization of dendritic spine morphology , 2003, Nature Neuroscience.

[3]  Carlo Sala,et al.  Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2 , 2003, Nature.

[4]  N. Heisterkamp,et al.  p120 Catenin-Associated Fer and Fyn Tyrosine Kinases Regulate β-Catenin Tyr-142 Phosphorylation and β-Catenin-α-Catenin Interaction , 2003, Molecular and Cellular Biology.

[5]  K. Sobue,et al.  Synchronized Formation and Remodeling of Postsynaptic Densities: Long-Term Visualization of Hippocampal Neurons Expressing Postsynaptic Density Proteins Tagged with Green Fluorescent Protein , 2003, The Journal of Neuroscience.

[6]  R. Huganir,et al.  Rapid Induction of Dendritic Spine Morphogenesis by trans-Synaptic EphrinB-EphB Receptor Activation of the Rho-GEF Kalirin , 2003, Neuron.

[7]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[8]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[9]  R. Kemler,et al.  Protein kinase CKII regulates the interaction of β-catenin withα -catenin and its protein stability , 2002, Journal of Cell Science.

[10]  E. Schuman,et al.  Depolarization Drives β-Catenin into Neuronal Spines Promoting Changes in Synaptic Structure and Function , 2002, Neuron.

[11]  M. Takeichi,et al.  Cadherin Regulates Dendritic Spine Morphogenesis , 2002, Neuron.

[12]  H. Okano,et al.  DN-Cadherin Is Required for Spatial Arrangement of Nerve Terminals and Ultrastructural Organization of Synapses , 2002, Molecular and Cellular Neuroscience.

[13]  Y. Takai,et al.  Nectin: an adhesion molecule involved in formation of synapses. , 2002, The Journal of cell biology.

[14]  M. Sheng,et al.  Dentritic spines : structure, dynamics and regulation , 2001, Nature Reviews Neuroscience.

[15]  G. Marrs,et al.  Rapid formation and remodeling of postsynaptic densities in developing dendrites , 2001, Nature Neuroscience.

[16]  A. Nagafuchi Molecular architecture of adherens junctions. , 2001, Current opinion in cell biology.

[17]  H. Okado,et al.  Spine Formation and Correlated Assembly of Presynaptic and Postsynaptic Molecules , 2001, The Journal of Neuroscience.

[18]  M. Segal,et al.  Regulation of Dendritic Spine Motility in Cultured Hippocampal Neurons , 2001, The Journal of Neuroscience.

[19]  M. Sheng,et al.  Regulation of Dendritic Spine Morphology by SPAR, a PSD-95-Associated RapGAP , 2001, Neuron.

[20]  Guosong Liu,et al.  Regulation of Dendritic Spine Morphology and Synaptic Function by Shank and Homer , 2001, Neuron.

[21]  R. Nicoll,et al.  PSD-95 involvement in maturation of excitatory synapses. , 2000, Science.

[22]  U. Wolfrum,et al.  Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin–catenins complex , 2000, The EMBO journal.

[23]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[24]  O. Bozdagi,et al.  Increasing Numbers of Synaptic Puncta during Late-Phase LTP N-Cadherin Is Synthesized, Recruited to Synaptic Sites, and Required for Potentiation , 2000, Neuron.

[25]  R. Yuste,et al.  Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. , 2000, Cerebral cortex.

[26]  M. Fischer,et al.  Glutamate receptors regulate actin-based plasticity in dendritic spines , 2000, Nature Neuroscience.

[27]  Ann Y. Nakayama,et al.  Small GTPases Rac and Rho in the Maintenance of Dendritic Spines and Branches in Hippocampal Pyramidal Neurons , 2000, The Journal of Neuroscience.

[28]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[29]  JoAnn Buchanan,et al.  Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo , 2000, Nature Neuroscience.

[30]  R. Yuste,et al.  Developmental regulation of spine motility in the mammalian central nervous system. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  D. Rimm,et al.  Controversies at the cytoplasmic face of the cadherin-based adhesion complex. , 1999, Current opinion in cell biology.

[32]  D. Benson,et al.  Neural (N)‐cadherin at developing thalamocortical synapses provides an adhesion mechanism for the formation of somatopically organized connections , 1999, The Journal of comparative neurology.

[33]  T. Shirao,et al.  Change in the Shape of Dendritic Spines Caused by Overexpression of Drebrin in Cultured Cortical Neurons , 1999, The Journal of Neuroscience.

[34]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[35]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[36]  I. Ethell,et al.  Cell Surface Heparan Sulfate Proteoglycan Syndecan-2 Induces the Maturation of Dendritic Spines in Rat Hippocampal Neurons , 1999, The Journal of cell biology.

[37]  Hidekazu Tanaka,et al.  N-Cadherin Redistribution during Synaptogenesis in Hippocampal Neurons , 1998, The Journal of Neuroscience.

[38]  M. Fischer,et al.  Rapid Actin-Based Plasticity in Dendritic Spines , 1998, Neuron.

[39]  M. Itoh,et al.  Involvement of ZO-1 in Cadherin-based Cell Adhesion through Its Direct Binding to α Catenin and Actin Filaments , 1997, The Journal of cell biology.

[40]  M. Takeichi,et al.  The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones , 1996, The Journal of cell biology.

[41]  D. Colman,et al.  A Model for Central Synaptic Junctional Complex Formation Based on the Differential Adhesive Specificities of the Cadherins , 1996, Neuron.

[42]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[43]  M. Segal,et al.  Morphological plasticity in dendritic spines of cultured hippocampal neurons , 1996, Neuroscience.

[44]  D L Rimm,et al.  Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Yamagata,et al.  Lamina-specific expression of adhesion molecules in developing chick optic tectum , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  N. Copeland,et al.  Mouse αN-Catenin: Two Isoforms, Specific Expression in the Nervous System, and Chromosomal Localization of the Gene , 1994 .

[47]  S. Hirohashi,et al.  Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization , 1992, Cell.

[48]  Yamamura Ken-ichi,et al.  Efficient selection for high-expression transfectants with a novel eukaryotic vector , 1991 .

[49]  H. Niwa,et al.  Efficient selection for high-expression transfectants with a novel eukaryotic vector. , 1991, Gene.

[50]  K. Svoboda,et al.  Structure and function of dendritic spines. , 2002, Annual review of physiology.

[51]  R. Yuste,et al.  Morphological changes in dendritic spines associated with long-term synaptic plasticity. , 2001, Annual review of neuroscience.

[52]  Mario Roederer,et al.  Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR 2 , 2022 .