New quantum MDS-convolutional codes derived from constacyclic codes

In this paper, we utilize a family of Hermitian dual-containing constacyclic codes to construct classical and quantum MDS convolutional codes. Our classical and quantum convolutional codes are optimal in the sense that they attain the classical (quantum) generalized Singleton bound.

[1]  Philippe Piret,et al.  MDS convolutional codes , 1983, IEEE Trans. Inf. Theory.

[2]  Markus Grassl,et al.  Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.

[3]  Shixin Zhu,et al.  Constacyclic Codes and Some New Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[4]  Wenchao Cai,et al.  On self-dual constacyclic codes over finite fields , 2015, Des. Codes Cryptogr..

[5]  Shixin Zhu,et al.  New optimal quantum convolutional codes , 2015 .

[6]  Guanghui Zhang,et al.  Application of Constacyclic Codes to Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[7]  Jianzhang Chen,et al.  Some families of asymmetric quantum codes and quantum convolutional codes from constacyclic codes , 2015 .

[8]  Gary M. Lee,et al.  Optical pulse timing resolution (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[9]  Joachim Rosenthal,et al.  Constructions of MDS-convolutional codes , 2001, IEEE Trans. Inf. Theory.

[10]  Giuliano G. La Guardia,et al.  On Classical and Quantum MDS-Convolutional BCH Codes , 2012, IEEE Transactions on Information Theory.

[11]  Joachim Rosenthal,et al.  BCH convolutional codes , 1999, IEEE Trans. Inf. Theory.

[12]  Heide Gluesing-Luerssen,et al.  On Doubly-Cyclic Convolutional Codes , 2006, Applicable Algebra in Engineering, Communication and Computing.

[13]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[14]  Giuliano G. La Guardia Nonbinary convolutional codes derived from group character codes , 2013, Discret. Math..

[15]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[16]  Joachim Rosenthal,et al.  Convolutional codes with maximum distance profile , 2003, Syst. Control. Lett..

[17]  H. Ollivier,et al.  Quantum convolutional codes: fundamentals , 2004 .

[18]  José Ignacio Iglesias Curto,et al.  Generalized AG convolutional codes , 2009, Adv. Math. Commun..

[19]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[20]  Joachim Rosenthal,et al.  Strongly-MDS convolutional codes , 2003, IEEE Transactions on Information Theory.

[21]  Jing Li,et al.  Efficient Quantum Stabilizer Codes: LDPC and LDPC-Convolutional Constructions , 2010, IEEE Transactions on Information Theory.

[22]  Martin Rötteler,et al.  Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[23]  Mark M. Wilde,et al.  Entanglement-Assisted Quantum Convolutional Coding , 2007, ArXiv.

[24]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[25]  Heide Gluesing-Luerssen,et al.  A matrix ring description for cyclic convolutional codes , 2008, Adv. Math. Commun..

[26]  Guanghui Zhang,et al.  New optimal asymmetric quantum codes from constacyclic codes , 2014 .

[27]  Joan-Josep Climent,et al.  Linear system modelization of concatenated block and convolutional codes , 2008 .

[28]  Guanghui Zhang,et al.  New quantum MDS codes , 2014 .

[29]  Kjell Jørgen Hole On classes of convolutional codes that are not asymptotically catastrophic , 2000, IEEE Trans. Inf. Theory.

[30]  Yuansheng Tang,et al.  Quantum convolutional codes derived from constacyclic codes , 2014 .

[31]  Giuliano G. La Guardia,et al.  On Negacyclic MDS-Convolutional Codes , 2013, ArXiv.

[32]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[33]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .

[34]  Jian-Ping Li,et al.  Nonbinary Quantum Convolutional Codes Derived from Negacyclic Codes , 2015 .