Noisy tensor completion via the sum-of-squares hierarchy

In the noisy tensor completion problem we observe m entries (whose location is chosen uniformly at random) from an unknown $$n_1 \times n_2 \times n_3$$ n 1 × n 2 × n 3 tensor T. We assume that T is entry-wise close to being rank r. Our goal is to fill in its missing entries using as few observations as possible. Let $$n = \max (n_1, n_2, n_3)$$ n = max ( n 1 , n 2 , n 3 ) . We show that if $$m > rsim n^{3/2} r$$ m ≳ n 3 / 2 r then there is a polynomial time algorithm based on the sixth level of the sum-of-squares hierarchy for completing it. Our estimate agrees with almost all of T’s entries almost exactly and works even when our observations are corrupted by noise. This is also the first algorithm for tensor completion that works in the overcomplete case when $$r > n$$ r > n , and in fact it works all the way up to $$r = n^{3/2-\epsilon }$$ r = n 3 / 2 - ϵ . Our proofs are short and simple and are based on establishing a new connection between noisy tensor completion (through the language of Rademacher complexity) and the task of refuting random constraint satisfaction problems. This connection seems to have gone unnoticed even in the context of matrix completion. Furthermore, we use this connection to show matching lower bounds. Our main technical result is in characterizing the Rademacher complexity of the sequence of norms that arise in the sum-of-squares relaxations to the tensor nuclear norm. These results point to an interesting new direction: Can we explore computational vs. sample complexity tradeoffs through the sum-of-squares hierarchy?

[1]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[2]  Andrei Z. Broder,et al.  On the second eigenvalue of random regular graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[3]  N. Z. Shor An approach to obtaining global extremums in polynomial mathematical programming problems , 1987 .

[4]  Endre Szemerédi,et al.  On the second eigenvalue of random regular graphs , 1989, STOC '89.

[5]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[6]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[7]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[8]  Michael Krivelevich,et al.  Efficient Recognition of Random Unsatisfiable k-SAT Instances by Spectral Methods , 2001, STACS.

[9]  Dima Grigoriev,et al.  Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity , 2001, Theor. Comput. Sci..

[10]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[11]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[12]  A. Carbery,et al.  Distributional and L-q norm inequalities for polynomials over convex bodies in R-n , 2001 .

[13]  U. Feige Relations between average case complexity and approximation complexity , 2002, STOC '02.

[14]  V. Koltchinskii,et al.  Empirical margin distributions and bounding the generalization error of combined classifiers , 2002, math/0405343.

[15]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[16]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[17]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[18]  Uriel Feige,et al.  Easily Refutable Subformulas of Large Random 3CNF Formulas , 2004, ICALP.

[19]  JOEL FRIEDMAN,et al.  Recognizing More Unsatisfiable Random k-SAT Instances Efficiently , 2005, SIAM J. Comput..

[20]  Elchanan Mossel,et al.  Learning nonsingular phylogenies and hidden Markov models , 2005, STOC '05.

[21]  Adi Shraibman,et al.  Rank, Trace-Norm and Max-Norm , 2005, COLT.

[22]  Amin Coja-Oghlan,et al.  Strong Refutation Heuristics for Random k-SAT , 2006, Combinatorics, Probability and Computing.

[23]  Uriel Feige,et al.  Witnesses for non-satisfiability of dense random 3CNF formulas , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[24]  U. Feige,et al.  Easily refutable subformulas of large random 3CNF formulas , 2004, Theory of Computing.

[25]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[27]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[29]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[30]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[31]  Ryota Tomioka,et al.  Estimation of low-rank tensors via convex optimization , 2010, 1010.0789.

[32]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[33]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[34]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[35]  J. Suykens,et al.  Nuclear Norms for Tensors and Their Use for Convex Multilinear Estimation , 2011 .

[36]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[37]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[38]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[39]  Yuan Zhou,et al.  Hypercontractivity, sum-of-squares proofs, and their applications , 2012, STOC '12.

[40]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[41]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[42]  Anima Anandkumar,et al.  A Method of Moments for Mixture Models and Hidden Markov Models , 2012, COLT.

[43]  Michael I. Jordan,et al.  Computational and statistical tradeoffs via convex relaxation , 2012, Proceedings of the National Academy of Sciences.

[44]  Anima Anandkumar,et al.  A Tensor Spectral Approach to Learning Mixed Membership Community Models , 2013, COLT.

[45]  Troy Lee,et al.  Matrix Completion From any Given Set of Observations , 2013, NIPS.

[46]  Philippe Rigollet,et al.  Complexity Theoretic Lower Bounds for Sparse Principal Component Detection , 2013, COLT.

[47]  Nathan Linial,et al.  More data speeds up training time in learning halfspaces over sparse vectors , 2013, NIPS.

[48]  Ashley Montanaro,et al.  Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization , 2010, JACM.

[49]  Sham M. Kakade,et al.  Learning mixtures of spherical gaussians: moment methods and spectral decompositions , 2012, ITCS '13.

[50]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Guy Kindler,et al.  On the optimality of semidefinite relaxations for average-case and generalized constraint satisfaction , 2013, ITCS '13.

[52]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[53]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[54]  David Steurer,et al.  Rounding sum-of-squares relaxations , 2013, Electron. Colloquium Comput. Complex..

[55]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[56]  Bart Vandereycken,et al.  Low-rank tensor completion by Riemannian optimization , 2014 .

[57]  Bo Huang,et al.  Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery , 2013, ICML.

[58]  Prateek Jain,et al.  Provable Tensor Factorization with Missing Data , 2014, NIPS.

[59]  Aditya Bhaskara,et al.  Smoothed analysis of tensor decompositions , 2013, STOC.

[60]  Nathan Linial,et al.  From average case complexity to improper learning complexity , 2013, STOC.

[61]  Yudong Chen,et al.  Coherent Matrix Completion , 2013, ICML.

[62]  David Steurer,et al.  Sum-of-squares proofs and the quest toward optimal algorithms , 2014, Electron. Colloquium Comput. Complex..

[63]  Moritz Hardt,et al.  Understanding Alternating Minimization for Matrix Completion , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[64]  Anima Anandkumar,et al.  A Spectral Algorithm for Latent Dirichlet Allocation , 2012, Algorithmica.

[65]  Tengyu Ma,et al.  Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms , 2015, APPROX-RANDOM.

[66]  Ryan O'Donnell,et al.  How to Refute a Random CSP , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[67]  Sujay Sanghavi,et al.  A New Sampling Technique for Tensors , 2015, ArXiv.

[68]  Jonathan Shi,et al.  Tensor principal component analysis via sum-of-square proofs , 2015, COLT.

[69]  Avi Wigderson,et al.  Sum-of-Squares Lower Bounds for Sparse PCA , 2015, NIPS.

[70]  Pravesh Kothari,et al.  SoS and Planted Clique: Tight Analysis of MPW Moments at all Degrees and an Optimal Lower Bound at Degree Four , 2015, ArXiv.

[71]  David Steurer,et al.  Dictionary Learning and Tensor Decomposition via the Sum-of-Squares Method , 2014, STOC.

[72]  Tselil Schramm,et al.  Speeding up sum-of-squares for tensor decomposition and planted sparse vectors , 2015, ArXiv.

[73]  Prasad Raghavendra,et al.  Tight Lower Bounds for Planted Clique in the Degree-4 SOS Program , 2015, ArXiv.

[74]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[75]  Tselil Schramm,et al.  Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors , 2015, STOC.

[76]  Ming Yuan,et al.  On Tensor Completion via Nuclear Norm Minimization , 2014, Foundations of Computational Mathematics.

[77]  Andrea Montanari,et al.  Spectral Algorithms for Tensor Completion , 2016, ArXiv.

[78]  Prasad Raghavendra,et al.  Strongly refuting random CSPs below the spectral threshold , 2016, STOC.

[79]  Ankur Moitra,et al.  Algorithmic Aspects of Machine Learning , 2018 .