Highly Anisotropic Tip-Induced Domain Growth in Polydomain Triglycine Sulfate

[1]  A. Turygin,et al.  Unusual domain growth during local switching in triglycine sulfate crystals , 2021, Applied Physics Letters.

[2]  T. Moise,et al.  Roadmap for Ferroelectric Domain Wall Nanoelectronics , 2021, Advanced Functional Materials.

[3]  A. Dejneka,et al.  Influence of Humidity on Local Polarization Reversal in a Rb:KTP Single Crystal , 2020, ACS Applied Electronic Materials.

[4]  A. Akhmatkhanov,et al.  Analogy between growth of crystals and ferroelectric domains. Application of Wulff construction , 2019, Journal of Crystal Growth.

[5]  A. Gruverman,et al.  Piezoresponse force microscopy and nanoferroic phenomena , 2019, Nature Communications.

[6]  G. Yuan,et al.  Self-Organized Ferroelectric Domains Controlled by a Constant Bias from the Atomic Force Microscopy Tip. , 2018, ACS applied materials & interfaces.

[7]  Zhuangchun Wu,et al.  Anti-parallel polarization switching in a triglycine sulfate organic ferroelectric insulator: The role of surface charges , 2018 .

[8]  O. M. Golitsyna,et al.  Evolution of the domain structure of triglycine sulphate single crystal in the vicinity of phase transition , 2017 .

[9]  Zhi-guo Liu,et al.  Ferroelectric Polarization Switching Dynamics and Domain Growth of Triglycine Sulfate and Imidazolium Perchlorate , 2016 .

[10]  A. Tagantsev,et al.  Velocity Control of 180° Domain Walls in Ferroelectric Thin Films by Electrode Modification. , 2016, Nano letters.

[11]  A. Akhmatkhanov,et al.  Micro- and nano-domain engineering in lithium niobate , 2015 .

[12]  A. Tagantsev,et al.  Controlling domain wall motion in ferroelectric thin films. , 2015, Nature nanotechnology.

[13]  B. Gautier,et al.  Finite element method simulation of the domain growth kinetics in single-crystal LiTaO3: Role of surface conductivity , 2011 .

[14]  N. Nakatani Observation of Ferroelectric Domain Structure in TGS , 2011 .

[15]  Radmir V. Gainutdinov,et al.  Multimode Atomic Force Microscopy of Triglycine Sulfate Crystal Domain Structure , 2008 .

[16]  Sergei V. Kalinin,et al.  Dual-frequency resonance-tracking atomic force microscopy , 2007, 0708.0424.

[17]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[18]  B. Noheda,et al.  Dielectric properties and low field switching of partially deuterated TGS , 2000 .

[19]  Z. Khim,et al.  Observation of domain dynamics and nanoscale control of domains in ferroelectric materials with scanning probe microscope , 1999 .

[20]  G. Rosenman,et al.  Domain broadening in quasi-phase-matched nonlinear optical devices , 1998 .

[21]  P. Günter,et al.  Ferroelectric domain switching in tri-glycine sulphate and barium-titanate bulk single crystals by scanning force microscopy , 1998 .

[22]  W. Osak Charge Transport and Relaxation in Triglycine Sulphate (TGS) , 1997 .

[23]  P. Günter,et al.  Scanning force microscopy of ferroelectric crystals , 1996 .

[24]  Roger W. Whatmore,et al.  Pyroelectric devices and materials , 1986 .

[25]  P. Lock Doped Triglycine Sulfate for Pyroelectric Applications , 1971 .

[26]  Hiroshi Ishiwara,et al.  Ferroelectric random access memories. , 2012, Journal of nanoscience and nanotechnology.

[27]  V. Shur Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 , 2006 .

[28]  Ravindra B. Lal,et al.  Growth and properties of triglycine sulfate (TGS) crystals: Review , 1993 .

[29]  V. Shur,et al.  CRYSTAL GROWTH AND DOMAIN STRUCTURE EVOLUTION , 1993 .

[30]  J. Hatano,et al.  Domain-wall orientations and domain shapes of ferroelectric TGS and TGSe crystals , 1978 .

[31]  P. Felix,et al.  Pyroelectric, dielectric and thermal properties of TGS, DTGS and TGFB , 1977 .