The pVHL-associated SCF ubiquitin ligase complex: Molecular genetic analysis of elongin B and C, Rbx1 and HIF-1α in renal cell carcinoma

[1]  R. Conaway,et al.  Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Squire,et al.  Chromosome 22q a frequent site of allele loss in head and neck carcinoma , 2000, Head & neck.

[3]  Eamonn R. Maher,et al.  Hypoxia Inducible Factor-α Binding and Ubiquitylation by the von Hippel-Lindau Tumor Suppressor Protein* , 2000, The Journal of Biological Chemistry.

[4]  L. Poellinger,et al.  Mechanism of regulation of the hypoxia‐inducible factor‐1α by the von Hippel‐Lindau tumor suppressor protein , 2000, The EMBO journal.

[5]  M. Ivan,et al.  Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel–Lindau protein , 2000, Nature Cell Biology.

[6]  Chun Xing Li,et al.  Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3 , 2000, Nature Genetics.

[7]  R. Rottapel,et al.  Suppressor of Cytokine Signaling-1 Inhibits VAV Function through Protein Degradation* , 2000, The Journal of Biological Chemistry.

[8]  Yusuke Nakamura,et al.  AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1 , 2000, Nature Genetics.

[9]  D. Neuberg,et al.  Differences in allelic distribution of two polymorphisms in the VHL-associated gene CUL2 in pheochromocytoma patients without somatic CUL2 mutations. , 1999, The Journal of clinical endocrinology and metabolism.

[10]  C Eng,et al.  Genomic organization and chromosomal localization of the human CUL2 gene and the role of von Hippel‐Lindau tumor suppressor‐binding protein (CUL2 and VBP1) mutation and loss in renal‐cell carcinoma development , 1999, Genes, chromosomes & cancer.

[11]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[12]  R. Dahiya,et al.  Loss of two new loci on chromosome 8 (8p23 and 8q12-13) in human prostate cancer. , 1999, International journal of oncology.

[13]  G. MacGrogan,et al.  LOH at 16p13 is a novel chromosomal alteration detected in benign and malignant microdissected papillary neoplasms of the breast. , 1998, Human pathology.

[14]  W. Kaelin,et al.  The VHL tumour-suppressor gene paradigm. , 1998, Trends in genetics : TIG.

[15]  G. Semenza,et al.  The human hypoxia-inducible factor 1alpha gene: HIF1A structure and evolutionary conservation. , 1998, Genomics.

[16]  L. Huang,et al.  Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway , 1998 .

[17]  S. Clifford,et al.  Inactivation of the von Hippel–Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: Evidence for a VHL‐independent pathway in clear cell renal tumourigenesis , 1998 .

[18]  Bert Vogelstein,et al.  Mutational Analysis of the APC/β-Catenin/Tcf Pathway in Colorectal Cancer , 1998 .

[19]  Q. Gu,et al.  Activating Smoothened mutations in sporadic basal-cell carcinoma , 1998, Nature.

[20]  E. Fearon Human cancer syndromes: clues to the origin and nature of cancer. , 1997, Science.

[21]  M. Wolter,et al.  Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. , 1997, Cancer research.

[22]  M. Nagao,et al.  Activation of Hypoxia-inducible Factor-1; Definition of Regulatory Domains within the α Subunit* , 1997, The Journal of Biological Chemistry.

[23]  C. Larsson,et al.  Familial non-VHL non-papillary clear-cell renal cancer , 1997, The Lancet.

[24]  Michael Dean,et al.  Is human patched the gatekeeper of common skin cancers? , 1996, Nature Genetics.

[25]  G. Semenza,et al.  Assignment of the hypoxia-inducible factor 1alpha gene to a region of conserved synteny on mouse chromosome 12 and human chromosome 14q. , 1996, Genomics.

[26]  J. Sklar,et al.  Loss of heterozygosity at chromosome regions 22q11–12 and 11p15.5 in renal rhabdoid tumors , 1996, Genes, chromosomes & cancer.

[27]  D. Kelsell,et al.  Development of a panel of monochromosomal somatic cell hybrids for rapid gene mapping , 1995, Annals of human genetics.

[28]  J. Herman,et al.  Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Lerman,et al.  Identification of intragenic mutations in the von Hippel-Lindau disease tumour suppressor gene and correlation with disease phenotype. , 1994, Human molecular genetics.

[30]  J. Brooks,et al.  Mutations of the VHL tumour suppressor gene in renal carcinoma , 1994, Nature Genetics.

[31]  M. Ferguson-Smith,et al.  Molecular genetic investigation of sporadic renal cell carcinoma: analysis of allele loss on chromosomes 3p, 5q, 11p, 17 and 22. , 1994, British Journal of Cancer.

[32]  T. Sekiya,et al.  Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Marvin B. Shapiro,et al.  RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. , 1987, Nucleic acids research.

[34]  W. Thoenes,et al.  Histopathology and classification of renal cell tumors (adenomas, oncocytomas and carcinomas). The basic cytological and histopathological elements and their use for diagnostics. , 1986, Pathology, research and practice.