The inverse-trans-influence in tetravalent lanthanide and actinide bis(carbene) complexes

Across the periodic table the trans-influence operates, whereby tightly bonded ligands selectively lengthen mutually trans metal–ligand bonds. Conversely, in high oxidation state actinide complexes the inverse-trans-influence operates, where normally cis strongly donating ligands instead reside trans and actually reinforce each other. However, because the inversetrans-influence is restricted to high-valent actinyls and a few uranium(V/VI) complexes, it has had limited scope in an area with few unifying rules. Here we report tetravalent cerium, uranium and thorium bis(carbene) complexes with trans C1⁄4M1⁄4C cores where experimental and theoretical data suggest the presence of an inverse-trans-influence. Studies of hypothetical praseodymium(IV) and terbium(IV) analogues suggest the inverse-trans-influence may extend to these ions but it also diminishes significantly as the 4f orbitals are populated. This work suggests that the inverse-trans-influence may occur beyond high oxidation state 5f metals and hence could encompass mid-range oxidation state actinides and lanthanides. Thus, the inverse-trans-influence might be a more general f-block principle. DOI: 10.1038/ncomms14137 OPEN

[1]  F. Tuna,et al.  Uranium-Carbene-Imido Metalla-Allenes: Ancillary-Ligand-Controlled cis-/trans-Isomerisation and Assessment of trans Influence in the R2 C=U(IV) =NR' Unit (R=Ph2 PNSiMe3 ; R'=CPh3 ). , 2016, Chemistry.

[2]  A. Bailey Acknowledgements , 2016, Biological Psychiatry.

[3]  F. Heinemann,et al.  Charge control of the inverse trans-influence. , 2015, Chemical communications.

[4]  P. Carroll,et al.  Control of cerium oxidation state through metal complex secondary structures† †Electronic supplementary information (ESI) available: NMR spectra, UV-Vis spectra, FTIR spectra, Evans' method data, field dependence data, XAS spectra, electrochemical data, DFT coordinates and rendered molecular orbital , 2015, Chemical science.

[5]  S. Liddle,et al.  Uranium Triamidoamine Chemistry , 2015 .

[6]  F. Tuna,et al.  Triamidoamine uranium(IV)–arsenic complexes containing one-, two- and threefold U–As bonding interactions , 2015, Nature Chemistry.

[7]  S. Liddle,et al.  Covalent Uranium Carbene Chemistry , 2015 .

[8]  T. Tyliszczak,et al.  Covalency in lanthanides. An X-ray absorption spectroscopy and density functional theory study of LnCl6(x-) (x = 3, 2). , 2015, Journal of the American Chemical Society.

[9]  F. Heinemann,et al.  Uranium(IV) halide (F-, Cl-, Br-, and I-) monoarene complexes. , 2014, Inorganic chemistry.

[10]  W. Hieringer,et al.  Synthesis and characterization of a uranium(II) monoarene complex supported by δ backbonding. , 2014, Angewandte Chemie.

[11]  P. Carroll,et al.  The inverse trans influence in a family of pentavalent uranium complexes. , 2014, Inorganic chemistry.

[12]  A. J. Blake,et al.  Synthesis and Characterization of an f-Block Terminal Parent Imido [U=NH] Complex: A Masked Uranium(IV) Nitride , 2014, Journal of the American Chemical Society.

[13]  P. Walsh,et al.  The electrochemical behavior of cerium(III/IV) complexes: Thermodynamics, kinetics and applications in synthesis , 2014 .

[14]  A. Blake,et al.  A cerium(IV)-carbon multiple bond. , 2013, Angewandte Chemie.

[15]  Justin J. Wilson,et al.  Synthetic methods for the preparation of platinum anticancer complexes. , 2013, Chemical reviews.

[16]  F. Tuna,et al.  An Actinide Zintl Cluster: A Tris(triamidouranium)μ3-η2:η2:η2-Heptaphosphanortricyclane and Its Diverse Synthetic Utility** , 2013, Angewandte Chemie.

[17]  P. Carroll,et al.  Homoleptic cerium(III) and cerium(IV) nitroxide complexes: significant stabilization of the 4+ oxidation state. , 2013, Inorganic chemistry.

[18]  J. Ziller,et al.  Identification of the +2 oxidation state for uranium in a crystalline molecular complex, [K(2.2.2-cryptand)][(C5H4SiMe3)3U]. , 2013, Journal of the American Chemical Society.

[19]  P. Carroll,et al.  Stable uranium(VI) methyl and acetylide complexes and the elucidation of an inverse trans influence ligand series. , 2013, Journal of the American Chemical Society.

[20]  A. J. Blake,et al.  Isolation and characterization of a uranium(VI)-nitride triple bond. , 2013, Nature chemistry.

[21]  A. J. Blake,et al.  The nature of the U=C double bond: pushing the stability of high-oxidation-state uranium carbenes to the limit. , 2013, Chemistry.

[22]  A. J. Blake,et al.  Single-molecule magnetism in a single-ion triamidoamine uranium(V) terminal mono-oxo complex. , 2013, Angewandte Chemie.

[23]  K. Meyer,et al.  Uranium-ligand multiple bonding in uranyl analogues, [L═U═L]n+, and the inverse trans influence. , 2013, Inorganic chemistry.

[24]  Richard A. Lewis,et al.  A complete family of terminal uranium chalcogenides, [U(E)(N{SiMe3}2)3]- (E = O, S, Se, Te). , 2012, Journal of the American Chemical Society.

[25]  A. J. Blake,et al.  Homologation and functionalization of carbon monoxide by a recyclable uranium complex , 2012, Proceedings of the National Academy of Sciences.

[26]  K. Gholivand,et al.  Trans influence and covalent bonding in a new octahedral lanthanum(III) complex of diphenylmorpholinyl phosphinamide , 2012 .

[27]  F. Heinemann,et al.  Synthesis of uranium(VI) terminal oxo complexes: molecular geometry driven by the inverse trans-influence. , 2012, Journal of the American Chemical Society.

[28]  G. Deacon,et al.  Direct reaction of iodine-activated lanthanoid metals with 2,6-diisopropylphenol. , 2012, Dalton transactions.

[29]  A. J. Blake,et al.  A formal high oxidation state inverse-sandwich diuranium complex: a new route to f-block-metal bonds. , 2011, Angewandte Chemie.

[30]  A. J. Blake,et al.  Halide, amide, cationic, manganese carbonylate, and oxide derivatives of triamidosilylamine uranium complexes. , 2011, Inorganic chemistry.

[31]  Michael J. Ferguson,et al.  Actinide metals with multiple bonds to carbon: synthesis, characterization, and reactivity of U(IV) and Th(IV) bis(iminophosphorano)methandiide pincer carbene complexes. , 2011, Inorganic chemistry.

[32]  A. J. Blake,et al.  Uranium-carbon multiple bonding: facile access to the pentavalent uranium carbene [U{C(PPh2NSiMe3)2}(Cl)2(I)] and comparison of U(V)=C and U(IV)=C bonds. , 2011, Angewandte Chemie.

[33]  A. J. Blake,et al.  Regioselective C-H activation and sequential C-C and C-O bond formation reactions of aryl ketones promoted by an yttrium carbene. , 2010, Journal of the American Chemical Society.

[34]  T. Emge,et al.  Covalent bonding and the trans influence in lanthanide compounds. , 2010, Inorganic chemistry.

[35]  A. J. Blake,et al.  Lanthanide tri-benzyl complexes: structural variations and useful precursors to phosphorus-stabilised lanthanide carbenes. , 2010, Dalton transactions.

[36]  Pekka Pyykkö,et al.  Bonding trends in molecular compounds of lanthanides: the double-bonded carbene cations LnCH(2) (+) (Ln=Sc, Y, La-Lu). , 2010, Chemistry.

[37]  Cristian G. Hrib,et al.  Imidazolin-2-iminato complexes of rare earth metals with very short metal-nitrogen bonds: experimental and theoretical studies. , 2009, Inorganic chemistry.

[38]  A. Simon,et al.  Rare Earth Halides Ln4X5Z. Part 2. An Orthorhombic Variant of Ln4X5Z Structure. , 2008 .

[39]  C. Zheng,et al.  Rare Earth Halides Ln4X5Z. Part 1. C and/or C2 in Ln4X5Z. , 2008 .

[40]  R. Denning Electronic structure and bonding in actinyl ions and their analogs. , 2007, The journal of physical chemistry. A.

[41]  Ralph G. Pearson,et al.  The Trans Effect in Metal Complexes , 2007 .

[42]  C. Zheng,et al.  EYPHKAMEN: Ln Octahedron Triples in Ln14(C2)3I20 with Ln: La, Ce. , 2006 .

[43]  G. Deacon,et al.  Manipulation of reaction pathways in redox transmetallation-ligand exchange syntheses of lanthanoid(II)/(III) aryloxide complexes. , 2006, Dalton transactions.

[44]  S. Nagase,et al.  Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. , 2005, Journal of the American Chemical Society.

[45]  A. Simon,et al.  Three New Ethanide Iodides of La: La5I9(C2), La6I10(C2) and La10I15(C2)2. , 2005 .

[46]  A. Simon,et al.  Crystal structure of dodecacerium heptadecaiodide triethanide, Ce12I17(C2)3 , 2005 .

[47]  M. Abu‐Omar,et al.  Nitrido and imido transition metal complexes of Groups 6–8 , 2003 .

[48]  N. Kaltsoyannis,et al.  On the inverse trans influence. Density functional studies of [MOX5]n− (M = Pa, n= 2; M = U, n= 1; M = Np, n= 0; X = F, Cl or Br) , 2002 .

[49]  Benjamin J. Coe,et al.  Trans-effects in octahedral transition metal complexes , 2000 .

[50]  A. Rheingold,et al.  Terphenyl Ligand Systems in Lanthanide Chemistry: Synthesis and Structural Characterization of Two 2,6-Dimesitylphenyl Derivatives of Trivalent Ytterbium. , 1999, Inorganic chemistry.

[51]  T. Emge,et al.  Cubane Clusters Containing Lanthanide Ions: (py)8Yb4Se4(SePh)4 and (py)10Yb6S6(SPh)6 , 1998 .

[52]  G. Deacon,et al.  Organoamido- and aryloxo-lanthanides—VII. The x-ray structure of five-coordinate [La(OC6H6Ph2-2,6)3(THF)2]·THF , 1993 .

[53]  J. Schwartz,et al.  Organometallics , 1987, Science.

[54]  R. Hoffmann,et al.  Bent cis d0 MoO22+ vs. linear trans d0f0 UO22+: a significant role for nonvalence 6p orbitals in uranyl , 1980 .

[55]  G. Bombieri,et al.  Crystal and molecular structure of dichlorodioxobis(triphenylphosphine oxide)uranium(VI) , 1978 .

[56]  D. Ellis,et al.  Effects of secondary ligands on the electronic structure of uranyls , 1976 .

[57]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[58]  Andreas C Scheinost,et al.  Emergence of Comparable Covalency in Isostructural Cerium ( IV ) -‐ and Uranium ( IV ) -‐ , 2017 .

[59]  G. Deacon,et al.  Direct reactions of iodine-activated rare-earth metals with phenols of varying steric bulk , 2014 .

[60]  Booth,et al.  Homoleptic Ce(III) and Ce(IV) Nitroxide Complexes: Significant Stabilization of the 4+ Oxidation State , 2014 .

[61]  T. Emge,et al.  Cubane Clusters Containing Lanthanide Ions: (py)(8)Yb(4)Se(4)(SePh)(4) and (py)(10)Yb(6)S(6)(SPh)(6). , 1998, Inorganic Chemistry.

[62]  G. Deacon,et al.  Organoamido- and Aryloxo-Lanthanoids. XI. Syntheses and Crystal Structures of Nd(Odpp)3, Nd(Odpp)3(thf) and [Nd(Odpp)3(thf)2].2(thf) (Odpp-=2,6-Diphenylphenolate): Variations in Intramolecular π-Ph-Nd Interactions , 1995 .

[63]  G. Deacon,et al.  Organoamido- and Aryloxo-lanthanoids. IX. Preparations and Structures of Tris(η2-3,5-diphenyl-pyrazolato)lanthanoid(III) Complexes With Triphenylphosphine Oxide and Tetrahydrofuran , 1993 .

[64]  R. Denning Electronic structure and bonding in actinyl ions , 1992 .

[65]  R. Butcher,et al.  Crystal structures of cis-dibromodioxobis(triphenylphosphine oxide)molybdenum(VI), cis-dichlorodioxobis(triphenylphosphine oxide)molybdenum(VI), and cis-bis(butane-2,3-diolato)dioxomolybdenum(VI)–butane-2,3-diol (1/2): a comparison of co-ordination spheres and the general stereochemistry of molybden , 1979 .

[66]  R. E. Richards,et al.  195 Pt–31P nuclear spin coupling constants and the nature of the trans-effect in platinum complexes , 1966 .