A nonlinear model for function-value multistep methods☆
暂无分享,去创建一个
[1] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .
[2] R. Schnabel,et al. Least Change Secant Updates for Quasi-Newton Methods , 1978 .
[3] John A. Ford,et al. On the use of function-values in unconstrained optimisation , 1989 .
[4] R. Fletcher. Practical Methods of Optimization , 1988 .
[5] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[6] Issam A. R. Moghrabi,et al. Multi-step quasi-Newton methods for optimization , 1994 .
[7] Issam A. R. Moghrabi,et al. Using function-values in multi-step quasi-Newton methods , 1996 .
[8] Issam A. R. Moghrabi,et al. Alternative parameter choices for multi-step Quasi-Newton methods , 1993 .
[9] D. Goldfarb. A family of variable-metric methods derived by variational means , 1970 .
[10] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[11] D. F. Shanno,et al. Matrix conditioning and nonlinear optimization , 1978, Math. Program..
[12] John A. Ford,et al. On the use of curvature estimates in quasi-Newtonian methods , 1991 .