A Study of Periodograms Standardized Using Training Datasets and Application to Exoplanet Detection

When the noise affecting time series is colored with unknown statistics, a difficulty for sinusoid detection is to control the true significance level of the test outcome. This paper investigates the possibility of using training datasets of the noise to improve this control. Specifically, we analyze the performances of various detectors applied to periodograms standardized using training datasets. Emphasis is put on sparse detection in the Fourier domain and on the limitation posed by the necessarily finite size of the training sets available in practice. We study the resulting false alarm and detection rates and show that standardization leads, in some cases, to powerful constant false alarm rate tests. The study is both analytical and numerical. Although analytical results are derived in an asymptotic regime, numerical results show that theory accurately describes the tests’ behavior for moderately large sample sizes. Throughout the paper, an application of the considered periodogram standardization is presented for exoplanet detection in radial velocity data.

[1]  Yu. I. Ingster,et al.  Detection boundary in sparse regression , 2010, 1009.1706.

[2]  F. Bouchy,et al.  An Earth-mass planet orbiting α Centauri B , 2012, Nature.

[3]  David Mary,et al.  Using hydrodynamical simulations of stellar atmospheres for periodogram standardization: Application to exoplanet detection , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  Mats Gyllenberg,et al.  Testing for Periodicity in Signals:an Application to Detect Partial Upper Airway Obstruction during Sleep , 2000 .

[5]  Langford B. White,et al.  Detection of sinusoids in unknown coloured noise using ratios of AR spectrum estimates , 1999, 1999 Information, Decision and Control. Data and Information Fusion Symposium, Signal Processing and Communications Symposium and Decision and Control Symposium. Proceedings (Cat. No.99EX251).

[6]  H. Akaike A new look at the statistical model identification , 1974 .

[7]  H. Finner,et al.  Goodness of fit tests in terms of local levels with special emphasis on higher criticism tests , 2016, 1603.05461.

[8]  Peak-insensitive Nonparametric Spectrum Estimation , 1994 .

[9]  N. Mowlavi,et al.  A comparative study of four significance measures for periodicity detection in astronomical surveys , 2015, 1504.00782.

[10]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[11]  Shean-Tsong Chiu,et al.  Peak-insensitive parametric spectrum estimation , 1990 .

[12]  David Ehrenreich,et al.  Instrumentation for the detection and characterization of exoplanets , 2014, Nature.

[13]  Abdelhak M. Zoubir,et al.  Bootstrap: theory and applications , 1993, Optics & Photonics.

[14]  Peter J. Kootsookos,et al.  Threshold behavior of the maximum likelihood estimator of frequency , 1994, IEEE Trans. Signal Process..

[15]  A. Lagrange,et al.  Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars , 2016, 1610.02168.

[16]  Natalie M. Batalha,et al.  Exploring exoplanet populations with NASA’s Kepler Mission , 2014, Proceedings of the National Academy of Sciences.

[17]  Robert A. Stine,et al.  The Power to See: A New Graphical Test of Normality , 2013 .

[18]  Douglas H. Jones,et al.  Goodness-of-fit test statistics that dominate the Kolmogorov statistics , 1979 .

[19]  Roman V. Baluev,et al.  Assessing the statistical significance of periodogram peaks , 2007, 0711.0330.

[20]  Barry G. Quinn,et al.  A fast efficient technique for the estimation of frequency , 1991 .

[21]  E. Hannan,et al.  DETERMINING THE NUMBER OF TERMS IN A TRIGONOMETRIC REGRESSION , 1994 .

[22]  Pierre Brémaud Fourier Analysis of Time Series , 2014 .

[23]  M. Süveges Extreme-value modelling for the significance assessment of periodogram peaks , 2012 .

[24]  K. F. Turkman,et al.  ON THE ASYMPTOTIC DISTRIBUTIONS OF MAXIMA OF TRIGONOMETRIC POLYNOMIALS WITH , 1984 .

[25]  R. Baluev Keplerian periodogram for Doppler exoplanet detection: optimized computation and analytic significance thresholds , 2014, 1409.6115.

[26]  雄三 細谷,et al.  Time Series with Mixed Spectra , 2015 .

[27]  R. P. Butler,et al.  Signals embedded in the radial velocity noise - Periodic variations in the τ Ceti velocities , 2012, 1212.4277.

[28]  P. Whittle The simultaneous estimation of a time series harmonic components and covariance structure , 1952 .

[29]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[30]  P. Husar,et al.  A periodogram-based method for the detection of steady-state visually evoked potentials , 1998, IEEE Transactions on Biomedical Engineering.

[31]  Chris Koen,et al.  The analysis of indexed astronomical time series – XI. The statistics of oversampled white noise periodograms , 2015 .

[32]  Steven Kay Adaptive detection for unknown noise power spectral densities , 1999, IEEE Trans. Signal Process..

[33]  Aryeh Kontorovich,et al.  Model Selection for Sinusoids in Noise: Statistical Analysis and a New Penalty Term , 2011, IEEE Transactions on Signal Processing.

[34]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[35]  P. Giommi,et al.  The PLATO 2.0 mission , 2013, 1310.0696.

[36]  Barry G. Quinn Testing for the presence of sinusoidal components , 1986 .

[37]  Elizabeth Bradley Analysis of time series , 2003 .

[38]  Rainer von Sachs,et al.  Estimating the Spectrum of a Stochastic Process in the Presence of a Contaminating Signal , 1993, IEEE Trans. Signal Process..

[39]  Stephen J. Roberts,et al.  Ghost in the time series: no planet for Alpha Cen B , 2015, 1510.05598.

[40]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[41]  Dharmendra Lingaiah,et al.  The Estimation and Tracking of Frequency , 2004 .

[42]  C. Koen The analysis of indexed astronomical time series – XII. The statistics of oversampled Fourier spectra of noise plus a single sinusoid , 2015 .

[43]  A. Hatzes THE RADIAL VELOCITY DETECTION OF EARTH-MASS PLANETS IN THE PRESENCE OF ACTIVITY NOISE: THE CASE OF α CENTAURI Bb , 2013, 1305.4960.

[44]  Xiaodong Li,et al.  Detection of multiple sinusoids in unknown colored noise using truncated cepstrum thresholding and local signal-to-noise-ratio , 2012 .

[45]  Barry G. Quinn A fast efficient technique for the estimation of frequency: Interpretation and generalisation , 1999 .

[46]  Jennifer C. Yee,et al.  Exoplanet Detection Techniques , 2015, 1505.06869.

[47]  David M. Kaplan,et al.  True equality (of pointwise sensitivity) at last: a Dirichlet alternative to Kolmogorov{Smirnov inference on distributions , 2014 .

[48]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[49]  F. Schlindwein,et al.  A study on the optimum order of autoregressive models for heart rate variability. , 2002, Physiological measurement.

[50]  U. Grenander,et al.  Statistical analysis of stationary time series , 1958 .

[51]  D. Donoho,et al.  Higher criticism for detecting sparse heterogeneous mixtures , 2004, math/0410072.

[52]  Andrew F. Siegel,et al.  Testing for Periodicity in a Time Series , 1980 .

[53]  M. Bartlett Periodogram analysis and continuous spectra. , 1950, Biometrika.

[54]  P. Hall,et al.  Innovated Higher Criticism for Detecting Sparse Signals in Correlated Noise , 2009, 0902.3837.

[55]  Guenther Walther,et al.  The average likelihood ratio for large-scale multiple testing and detecting sparse mixtures , 2011, 1111.0328.

[56]  E. Hannan Testing for a Jump in the Spectral Function , 1961 .

[57]  Richard A. Davis,et al.  The Maximum of the Periodogram of a Non-Gaussian Sequence , 1999 .

[58]  P. Gregory An apodized Kepler periodogram for separating planetary and stellar activity signals , 2016, Monthly notices of the Royal Astronomical Society.

[59]  Arthur Schuster,et al.  On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena , 1898 .

[60]  E. Bølviken TESTS OF SIGNIFICANCE IN PERIODOGRAM ANALYSIS , 1976 .

[61]  L. Bigot,et al.  The diameter of the CoRoT target HD 49933 - Combining the 3D limb darkening, asteroseismology, and interferometry , 2011, 1110.0985.

[62]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[63]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[64]  Adhir K Basu,et al.  Introduction to Stochastic Process , 2002 .

[65]  Shean-Tsong Chiu,et al.  Detecting Periodic Components in a White Gaussian Time Series , 1989 .

[66]  A. Buja,et al.  Aldor-Noiman, S., Brown, L.D., Buja, A., Rolke, W., and Stine, R.A. (2013), “The Power to See: A New Graphical Test of Normality,” The American Statistician, 67, 249–260 , 2014 .

[67]  Dale L. Zimmerman,et al.  Testing for directional symmetry in spatial dependence using the periodogram , 2005 .

[68]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[69]  Boaz Nadler,et al.  On the exact Berk-Jones statistics and their p-value calculation , 2013, 1311.3190.

[70]  Barry G. Quinn,et al.  The Estimation and Tracking of Frequency , 2001 .

[71]  J. Kiefer,et al.  An Introduction to Stochastic Processes. , 1956 .

[72]  M. Aboy,et al.  Lomb-Wech periodogram for non-uniform sampling , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[73]  D. F. Nicholls ESTIMATION OF THE SPECTRAL DENSITY FUNCTION WHEN TESTING FOR A JUMP IN THE SPECTRUM , 1967 .

[74]  H. Finner,et al.  The intermediates take it all: Asymptotics of higher criticism statistics and a powerful alternative based on equal local levels , 2015, Biometrical journal. Biometrische Zeitschrift.

[75]  Erhan Çinlar,et al.  Introduction to stochastic processes , 1974 .

[76]  M. Zechmeister,et al.  The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms , 2009, 0901.2573.

[77]  Michael Shimshoni,et al.  On Fisher's Test of Significance in Harmonic Analysis , 1971 .

[78]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[79]  M. Suveges Extreme-value modelling for the significance assessment of periodogram peaks , 2012, 1212.0645.

[80]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[81]  M. Auvergne,et al.  The CoRoT satellite in flight : description and performance , 2009, 0901.2206.

[82]  G. Larry Bretthorst,et al.  Frequency Estimation and Generalized Lomb-Scargle Periodograms , 2003 .

[83]  M. Perryman The Exoplanet Handbook , 2011 .

[84]  David Mary,et al.  A non-asymptotic standardization of binomial counts in Higher Criticism , 2014, 2014 IEEE International Symposium on Information Theory.

[85]  H. Hartley,et al.  Tests of significance in harmonic analysis. , 1949, Biometrika.

[86]  I. Kale,et al.  Detection of multiple sinusoids buried in noise via balanced model truncation , 1998, IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222).

[87]  Boaz Nadler,et al.  Fast calculation of boundary crossing probabilities for Poisson processes , 2015, 1503.04363.

[88]  B. Truong-Van A New Approach to Frequency Analysis with Amplified Harmonics , 1990 .

[89]  L. Breuer Introduction to Stochastic Processes , 2022, Statistical Methods for Climate Scientists.

[90]  E. Parzen Multiple Time Series: Determining the Order of Approximating Autoregressive Schemes. , 1975 .

[91]  Jian Li,et al.  Higher criticism: $p$-values and criticism , 2014, 1411.1437.

[92]  C. Neiner,et al.  Low-amplitude variations detected by CoRoT in the B8IIIe star HD 175869 , 2009 .

[93]  R. J. Bhansali,et al.  A Mixed Spectrum Analysis of the Lynx Data , 1979 .

[94]  A. Schwarzenberg-Czerny The distribution of empirical periodograms: Lomb-Scargle and PDM spectra , 1998 .

[95]  D. Mary,et al.  Overcoming the stellar noise barrier for the detection of telluric exoplanets: an approach based on hydrodynamical simulations , 2016 .

[96]  L. Bertello,et al.  Global solar Doppler velocity determination with the GOLF/SoHO instrument , 2005 .

[97]  N. Wermuth,et al.  Nonlinear Time Series: Nonparametric and Parametric Methods , 2005 .

[98]  Herbert A. David,et al.  Order Statistics , 2011, International Encyclopedia of Statistical Science.

[99]  Jorma Rissanen,et al.  Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.

[100]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .