On splitting-based numerical methods for nonlinear models of European options

We present a large class of nonlinear models of European options as parabolic equations with quasi-linear diffusion and fully nonlinear hyperbolic part. The main idea of the operator splitting method (OSM) is to couple known difference schemes for nonlinear hyperbolic equations with other ones for quasi-linear parabolic equations. We use flux limiter techniques, explicit–implicit difference schemes, Richardson extrapolation, etc. Theoretical analysis for illiquid market model is given. The numerical experiments show second-order accuracy for the numerical solution (the price) and Greeks Delta and Gamma, positivity and monotonicity preserving properties of the approximations.

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  Alexander Kurganov,et al.  On Splitting-Based Numerical Methods for Convection-Diffusion Equations , 2008 .

[3]  P. Wilmott Derivatives: The Theory and Practice of Financial Engineering , 1998 .

[4]  D. Ševčovič Analytical and Numerical Methods for Pricing Financial Derivatives , 2011 .

[5]  Mark H. A. Davis,et al.  European option pricing with transaction costs , 1993 .

[6]  Lucas Jódar,et al.  A consistent stable numerical scheme for a nonlinear option pricing model in illiquid markets , 2012, Math. Comput. Simul..

[7]  K. Manjunatha,et al.  Derivatives , 2006 .

[8]  Rüdiger Weiner,et al.  A Positive Splitting Method for Mixed Hyperbolic-Parabolic Systems , 2001 .

[9]  D. Ševčovič,et al.  A TRANSFORMATION METHOD FOR SOLVING THE HAMILTON–JACOBI–BELLMAN EQUATION FOR A CONSTRAINED DYNAMIC STOCHASTIC OPTIMAL ALLOCATION PROBLEM , 2013, The ANZIAM Journal.

[10]  H. Holden,et al.  Splitting methods for partial differential equations with rough solutions : analysis and MATLAB programs , 2010 .

[11]  H. Berestycki,et al.  Computing the implied volatility in stochastic volatility models , 2004 .

[12]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[13]  P. Raviart An analysis of particle methods , 1985 .

[14]  Miglena N. Koleva,et al.  Quasilinearization numerical scheme for fully nonlinear parabolic problems with applications in models of mathematical finance , 2013, Math. Comput. Model..

[15]  R. LeVeque Numerical methods for conservation laws , 1990 .

[16]  Lucas Jódar,et al.  Numerical analysis and computing of a non-arbitrage liquidity model with observable parameters for derivatives , 2011, Comput. Math. Appl..

[17]  Lucas Jódar,et al.  Numerical analysis and simulation of option pricing problems modeling illiquid markets , 2010, Comput. Math. Appl..

[18]  Philip Protter,et al.  Noname manuscript No. (will be inserted by the editor) Liquidity Risk and Arbitrage Pricing Theory , 2003 .

[19]  D. Duffy Second‐Order Parabolic Differential Equations , 2013 .

[20]  Miglena N. Koleva,et al.  A Kernel-Based Algorithm for Numerical Solution of Nonlinear PDEs in Finance , 2011, LSSC.

[21]  B. Andrews,et al.  Time-interior gradient estimates for quasilinear parabolic equations , 2013, 1306.1281.

[22]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[23]  D. Kuzmin,et al.  High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter , 2004 .