The last decade has seen a rapid growth in the use of mobile devices all over the world. With an increasing use of mobile devices, mobile applications are becoming more diverse and complex, demanding more computational resources. However, mobile devices are typically resource-limited (i.e., a slower-speed CPU, a smaller memory) due to a variety of reasons. Mobile users will be capable of running applications with heavy computation if they can offload some of their computations to other places, such as a desktop or server machines. However, mobile users are typically subject to dynamically changing network environments, particularly, due to user mobility. This makes it hard to choose good offloading decisions in mobile environments. In general, users’ mobility can provide some hints for upcoming changes to network environments. Motivated by this, we propose a mobility model of each individual user taking advantage of the regularity of his/her mobility pattern, and develop an offloading decision-making technique based on the mobility model. We evaluate our technique through trace-based simulation with real log data traces from 14 Android users. Our evaluation results show that the proposed technique can help boost the performance of mobile devices in terms of response time and energy consumption, when users are highly mobile.
[1]
Tong Liu,et al.
Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks
,
1998,
IEEE J. Sel. Areas Commun..
[2]
Ramesh Govindan,et al.
Odessa: enabling interactive perception applications on mobile devices
,
2011,
MobiSys '11.
[3]
Alec Wolman,et al.
MAUI: making smartphones last longer with code offload
,
2010,
MobiSys '10.
[4]
A. Helmy,et al.
Empirical modeling of campus-wide pedestrian mobility observations on the USC campus
,
2004,
IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.
[5]
Tracy Camp,et al.
A survey of mobility models for ad hoc network research
,
2002,
Wirel. Commun. Mob. Comput..
[6]
Byung-Gon Chun,et al.
CloneCloud: elastic execution between mobile device and cloud
,
2011,
EuroSys '11.