A connection based approach to common-sense topological description and reasoning

L'A. developpe une approche de la formalisation de la description et du raisonnement topologiques (theorie RCC, calcul de connexion des regions) qui offre une alternative au modele mathematique conventionnel. Fondee sur des entites spatiales plutot que sur des classes d'espaces, cette approche permet d'etablir des liens entre les concepts fondamentaux de la topologie

[1]  Nelson Goodman,et al.  The calculus of individuals and its uses , 1940, Journal of Symbolic Logic.

[2]  Bowman L. Clarke,et al.  A calculus of individuals based on "connection" , 1981, Notre Dame J. Formal Log..

[3]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[4]  Bowman L. Clarke,et al.  Individuals and points , 1985, Notre Dame J. Formal Log..

[5]  B. L. Clark Individuals and points. , 1985 .

[6]  Anthony G. Cohn,et al.  Modelling Topological and Metrical Properties in Physical Processes , 1989, KR.

[7]  Kenneth M. Kahn,et al.  Janus: A step towards distributed constraint programming , 1990, NACLP.

[8]  Antony Galton,et al.  A Critical Examination of Allen's Theory of Action and Time , 1990, Artif. Intell..

[9]  Timothy Williamson,et al.  Parts. A Study in Ontology , 1990 .

[10]  Giangiacomo Gerla,et al.  Connection Structures , 1991, Notre Dame J. Formal Log..

[11]  Travé-Massuyès Conceptual Neighborhood and its role in temporal and spatial reasoning , 1991 .

[12]  Anthony G. Cohn,et al.  Computing Transivity Tables: A Challenge For Automated Theorem Provers , 1992, CADE.

[13]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[14]  Anthony G. Cohn,et al.  Qualitative Simulation Based on a Logical Formalism of Space and Time , 1992, AAAI.

[15]  Christian Freksa,et al.  Temporal Reasoning Based on Semi-Intervals , 1992, Artif. Intell..

[16]  A. Cohn COMPLETING SORT HIERARCHIES , 1992 .

[17]  Daniel R. Montello,et al.  Spatial Information Theory A Theoretical Basis for GIS , 1995, Lecture Notes in Computer Science.

[18]  Anthony G. Cohn,et al.  Qualitative and Topological Relationships in Spatial Databases , 1993, SSD.

[19]  Laure Vieu,et al.  A Logical Framework for Reasoning about Space , 1993, COSIT.

[20]  Barry Smith Ontology and the logistic analysis of reality , 1993 .

[21]  Michael F. Worboys,et al.  A Canonical Model for a Class of Areal Spatial Objects , 1993, SSD.

[22]  Nicholas Mark Gotts,et al.  How Far Can We 'C'? Defining a 'Doughnut' Using Connection Alone , 1994, KR.

[23]  Brandon Bennett,et al.  Spatial Reasoning with Propositional Logics , 1994, KR.

[24]  Anthony G. Cohn,et al.  A Comparison Of Structures In Spatial And Temporal Logics , 1994 .

[25]  Anthony G. Cohn,et al.  Defining the Syntax and the Semantics of a Visual Programming Language in a Spatial Logic , 1994, AAAI 1994.

[26]  Anthony G. Cohn,et al.  The EGG/YOLK reliability hierarchy: semantic data integration using sorts with prototypes , 1994, CIKM '94.

[27]  Laure Vieu,et al.  Toward a Geometry of Common Sense: A Semantics and a Complete Axiomatization of Mereotopology , 1995, IJCAI.

[28]  Max J. Egenhofer,et al.  On the Equivalence of Topological Relations , 1995, Int. J. Geogr. Inf. Sci..

[29]  Anthony G. Cohn,et al.  The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries , 2020 .

[30]  Max J. Egenhofer,et al.  Advances in Spatial Databases , 1997, Lecture Notes in Computer Science.

[31]  Brandon Bennett,et al.  Modal Logics for Qualitative Spatial Reasoning , 1996, Log. J. IGPL.

[32]  G. Cui.A.,et al.  Qualitative Simulation Based Oii A Logic Of Space And Time * , .