Hypergraph-based image retrieval for graph-based representation

In this paper, we introduce a novel method for graph indexing. We propose a hypergraph-based model for graph data sets by allowing cluster overlapping. More precisely, in this representation one graph can be assigned to more than one cluster. Using the concept of the graph median and a given threshold, the proposed algorithm detects automatically the number of classes in the graph database. We consider clusters as hyperedges in our hypergraph model and we index the graph set by the hyperedge centroids. This model is interesting to traverse the data set and efficient to retrieve graphs.

[1]  Philip N. Klein,et al.  Shock-Based Indexing into Large Shape Databases , 2002, ECCV.

[2]  Robert F. Ling,et al.  Cluster analysis algorithms for data reduction and classification of objects , 1981 .

[3]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[4]  Salvatore Tabbone,et al.  Graph Embedding Using Constant Shift Embedding , 2010, ICPR Contests.

[5]  Selim Aksoy,et al.  Recognizing Patterns in Signals, Speech, Images and Videos , 2010, Lecture Notes in Computer Science.

[6]  Shengrui Wang,et al.  Measuring Overlap-rate in a Hierarchical Approach for Color Image Segmentation , 2007, Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).

[7]  Horst Bunke,et al.  Matching of Hypergraphs - Algorithms, Applications, and Experiments , 2008, Applied Pattern Recognition.

[8]  Horst Bunke,et al.  Recent Advances in Structural Pattern Recognition with Applications to Visual Form Analysis , 2001, IWVF.

[9]  Ernest Valveny,et al.  A generic framework for median graph computation based on a recursive embedding approach , 2011, Comput. Vis. Image Underst..

[10]  Robert M. Haralick,et al.  Organization of Relational Models for Scene Analysis , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Edwin R. Hancock,et al.  A Riemannian approach to graph embedding , 2007, Pattern Recognit..

[12]  Ernest Valveny,et al.  Comparing Graph Similarity Measures for Graphical Recognition , 2009, GREC.

[13]  Srinath Srinivasa,et al.  A Platform Based on the Multi-dimensional Data Model for Analysis of Bio-Molecular Structures , 2003, VLDB.

[14]  Abraham Kandel,et al.  Applied Pattern Recognition , 2008, Studies in Computational Intelligence.

[15]  Luc Brun,et al.  Shape Classification Using a Flexible Graph Kernel , 2009, CAIP.

[16]  Philip S. Yu,et al.  Graph indexing: a frequent structure-based approach , 2004, SIGMOD '04.

[17]  Horst Bunke,et al.  On Median Graphs: Properties, Algorithms, and Applications , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Claudio Gutierrez,et al.  Survey of graph database models , 2008, CSUR.

[19]  Andrea Torsello,et al.  Beyond partitions: Allowing overlapping groups in pairwise clustering , 2008, 2008 19th International Conference on Pattern Recognition.

[20]  K. Boyer,et al.  Organizing Large Structural Modelbases , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  C. Berge Graphes et hypergraphes , 1970 .

[22]  Pietro Perona,et al.  Beyond pairwise clustering , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Kaspar Riesen,et al.  Graph Classification Based on Dissimilarity Space Embedding , 2008, SSPR/SPR.

[25]  T. Ravindra Babu,et al.  Comparison of genetic algorithm based prototype selection schemes , 2001, Pattern Recognit..

[26]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[27]  Edwin R. Hancock,et al.  Graph embedding using tree edit-union , 2007, Pattern Recognit..

[28]  Salvatore Tabbone,et al.  Attributed Graph Matching Using Local Descriptions , 2009, ACIVS.

[29]  Benjamin B. Kimia,et al.  Symmetry-Based Indexing of Image Databases , 1998, J. Vis. Commun. Image Represent..

[30]  Edwin R. Hancock,et al.  Spectral Embedding of Feature Hypergraphs , 2008, SSPR/SPR.

[31]  Dennis Shasha,et al.  GraphGrep: A fast and universal method for querying graphs , 2002, Object recognition supported by user interaction for service robots.

[32]  Salvatore Tabbone,et al.  Towards Performance Evaluation of Graph-Based Representation , 2011, GbRPR.

[33]  Douglas Comer,et al.  Ubiquitous B-Tree , 1979, CSUR.

[34]  R. Bayer,et al.  Organization and maintenance of large ordered indices , 1970, SIGFIDET '70.

[35]  Thomas Gärtner,et al.  Kernels and Distances for Structured Data , 2004, Machine Learning.

[36]  Edwin R. Hancock,et al.  Spectral embedding of graphs , 2003, Pattern Recognit..

[37]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[38]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[39]  Kaspar Riesen,et al.  Graph Embedding in Vector Spaces by Means of Prototype Selection , 2007, GbRPR.

[40]  Nizar Bouguila,et al.  Unsupervised learning of a finite discrete mixture: Applications to texture modeling and image databases summarization , 2007, J. Vis. Commun. Image Represent..

[41]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[42]  Rudolf Bayer,et al.  Organization and maintenance of large ordered indexes , 1972, Acta Informatica.

[43]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[44]  Horst Bunke,et al.  Graph Clustering Using the Weighted Minimum Common Supergraph , 2003, GbRPR.