Contextual Priming for Object Detection

There is general consensus that context can be a rich source of information about an object's identity, location and scale. In fact, the structure of many real-world scenes is governed by strong configurational rules akin to those that apply to a single object. Here we introduce a simple framework for modeling the relationship between context and object properties based on the correlation between the statistics of low-level features across the entire scene and the objects that it contains. The resulting scheme serves as an effective procedure for object priming, context driven focus of attention and automatic scale-selection on real-world scenes.

[1]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[2]  L. Stark,et al.  Scanpaths in Eye Movements during Pattern Perception , 1971, Science.

[3]  M. Potter Meaning in visual search. , 1975, Science.

[4]  tephen E. Palmer The effects of contextual scenes on the identification of objects , 1975, Memory & cognition.

[5]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[6]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[7]  I. Biederman,et al.  Scene perception: Detecting and judging objects undergoing relational violations , 1982, Cognitive Psychology.

[8]  Robert M. Haralick,et al.  Decision Making in Context , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[10]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[11]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[12]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[13]  P. de Graef,et al.  Perceptual effects of scene context on object identification , 1990, Psychological research.

[14]  Thomas M. Strat,et al.  Context-Based Vision: Recognizing Objects Using Information from Both 2D and 3D Imagery , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[16]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[17]  Daniel D. Fu,et al.  Vision and navigation in man-made environments: looking for syrup in all the right places , 1994 .

[18]  A. Oliva,et al.  From Blobs to Boundary Edges: Evidence for Time- and Spatial-Scale-Dependent Scene Recognition , 1994 .

[19]  Rosalind W. Picard,et al.  Texture orientation for sorting photos "at a glance" , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[20]  Claudio S. Pinhanez,et al.  Using approximate models as source of contextual information for vision processing , 1995 .

[21]  Aaron F. Bobick,et al.  Closed-world tracking , 1995, Proceedings of IEEE International Conference on Computer Vision.

[22]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[23]  Rajesh P. N. Rao,et al.  Modeling Saccadic Targeting in Visual Search , 1995, NIPS.

[24]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[25]  W. Richards,et al.  Model structure and reliable inference , 1996 .

[26]  Paul A. Viola,et al.  Structure Driven Image Database Retrieval , 1997, NIPS.

[27]  A. Oliva,et al.  Coarse Blobs or Fine Edges? Evidence That Information Diagnosticity Changes the Perception of Complex Visual Stimuli , 1997, Cognitive Psychology.

[28]  Neill W. Campbell,et al.  Interpreting image databases by region classification , 1997, Pattern Recognit..

[29]  Ronald A. Rensink,et al.  TO SEE OR NOT TO SEE: The Need for Attention to Perceive Changes in Scenes , 1997 .

[30]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Serge J. Belongie,et al.  Region-based image querying , 1997, 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries.

[32]  W. Eric L. Grimson,et al.  Configuration based scene classification and image indexing , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Martin Szummer,et al.  Indoor-outdoor image classification , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.

[34]  Pietro Perona,et al.  A Probabilistic Approach to Object Recognition Using Local Photometry and Global Geometry , 1998, ECCV.

[35]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Neil Gershenfeld,et al.  The nature of mathematical modeling , 1998 .

[37]  Anil K. Jain,et al.  On image classification: city images vs. landscapes , 1998, Pattern Recognit..

[38]  M. Chun,et al.  Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention , 1998, Cognitive Psychology.

[39]  J. Henderson,et al.  High-level scene perception. , 1999, Annual review of psychology.

[40]  Antonio Torralba,et al.  Semantic organization of scenes using discriminant structural templates , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[41]  Joseph Sill,et al.  Image Recognition in Context: Application to Microscopic Urinalysis , 1999, NIPS.

[42]  Irfan A. Essa,et al.  Exploiting human actions and object context for recognition tasks , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[43]  A. Oliva,et al.  Diagnostic Colors Mediate Scene Recognition , 2000, Cognitive Psychology.

[44]  Edward H. Adelson,et al.  Surface Reflectance Estimation and Natural Illumination Statistics , 2001 .

[45]  Hany Farid,et al.  Blind inverse gamma correction , 2001, IEEE Trans. Image Process..

[46]  Lawrence W. Stark,et al.  Top-down guided eye movements , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[47]  Yair Weiss,et al.  Deriving intrinsic images from image sequences , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[48]  Antonio Torralba,et al.  Contextual Modulation of Target Saliency , 2001, NIPS.

[49]  Antonio Torralba,et al.  Statistical Context Priming for Object Detection , 2001, ICCV.

[50]  Antonio Torralba,et al.  Depth Estimation from Image Structure , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[52]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[53]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[54]  Tony Lindeberg,et al.  Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention , 1993, International Journal of Computer Vision.

[55]  W. R. Howard The Nature of Mathematical Modeling , 2006 .