Effects of electric and magnetic charges on weak deflection angle and bounding greybody of black holes in nonlinear electrodynamics

[1]  Z. Yousaf,et al.  Electromagnetic influence on hyperbolically symmetric sources in f(T) gravity , 2022, The European Physical Journal C.

[2]  Z. Yousaf,et al.  Cylindrical Gravastar Like-Structures in f(G) Gravity , 2022, Galaxies.

[3]  Z. Yousaf Spatially Hyperbolic Gravitating Sources in Λ-Dominated Era , 2022, Universe.

[4]  Z. Yousaf,et al.  Quasi-homologous evolution of relativistic charged objects within f(G,T) gravity , 2022, Chinese Journal of Physics.

[5]  A. Övgün,et al.  Dark matter effect on the weak deflection angle by black holes at the center of Milky Way and M87 galaxies , 2022, The European Physical Journal C.

[6]  Z. Yousaf,et al.  Hyperbolically symmetric sources in f(R,T) gravity , 2022, Annals of Physics.

[7]  J. Schee,et al.  Strong gravitational lensing around Kehagias–Sfetsos compact objects surrounded by plasma , 2021, The European Physical Journal Plus.

[8]  F. Hussain,et al.  Generalized Lemaítre–Tolman–Bondi spacetime under the influence of electric charge and Palatini f(R) gravity , 2021, The European Physical Journal C.

[9]  A. Övgün,et al.  Nonlinear electrodynamics effects on the black hole shadow, deflection angle, quasinormal modes and greybody factors , 2021, Journal of Cosmology and Astroparticle Physics.

[10]  S. Mazharimousavi,et al.  Electric and magnetic black holes in a new nonlinear electrodynamics model , 2021 .

[11]  A. Ovgun,et al.  Matter-antimatter asymmetry induced by non-linear electrodynamics , 2021, 2105.07695.

[12]  P. K. Yu,et al.  Shadow and weak deflection angle of extended uncertainty principle black hole surrounded with dark matter , 2021, Annals of Physics.

[13]  F. Lobo,et al.  Shadow, deflection angle and quasinormal modes of Born-Infeld charged black holes , 2020, 2010.05755.

[14]  A. Övgün Weak deflection angle of black-bounce traversable wormholes usingGauss–Bonnet theorem in the dark matter medium , 2020, TURKISH JOURNAL OF PHYSICS.

[15]  A. Övgün,et al.  Effect of the quintessential dark energy on weak deflection angle by Kerr–Newmann Black hole , 2020, 2007.16027.

[16]  A. Belhaj,et al.  Deflection angle and shadow behaviors of quintessential black holes in arbitrary dimensions , 2020, Classical and Quantum Gravity.

[17]  G. C. Samanta,et al.  Inflationary cosmology- A new approach using Non-linear electrodynamics , 2020, 2005.05568.

[18]  R. Konoplya,et al.  Grey-body factors and Hawking radiation of black holes in 4D Einstein-Gauss-Bonnet gravity , 2020, Physics Letters B.

[19]  A. Övgün,et al.  Weak gravitational lensing by Bocharova–Bronnikov–Melnikov–Bekenstein black holes using Gauss–Bonnet theorem , 2020, The European Physical Journal Plus.

[20]  A. Övgün,et al.  Weak Deflection Angle and Shadow by Tidal Charged Black Hole , 2020, Universe.

[21]  和徳 秋山,et al.  Event Horizon Telescopeの初期成果 , 2020 .

[22]  A. Övgün,et al.  Weak gravitational lensing by stringy black holes , 2019, The European Physical Journal Plus.

[23]  S. Mazharimousavi,et al.  Electric Black Holes in a Model of Nonlinear Electrodynamics , 2019, Annalen der Physik.

[24]  H. Asada,et al.  The Effects of Finite Distance on the Gravitational Deflection Angle of Light , 2019, Universe.

[25]  Yashmitha Kumaran,et al.  Weak deflection angle of extended uncertainty principle black holes , 2019, Chinese Physics C.

[26]  A. Övgün,et al.  Deflection angle of photon from magnetized black hole and effect of nonlinear electrodynamics , 2019, The European Physical Journal C.

[27]  P. Boonserm,et al.  Greybody factor for black string in dRGT massive gravity , 2019, The European Physical Journal C.

[28]  A. Övgün Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem , 2018, Universe.

[29]  K. Jusufi,et al.  Weak Gravitational lensing by phantom black holes and phantom wormholes using the Gauss–Bonnet theorem , 2018, Annals of Physics.

[30]  S. Kruglov On a Model of Magnetically Charged Black Hole with Nonlinear Electrodynamics , 2018, 1805.07595.

[31]  A. Övgün,et al.  Inflation from a nonlinear magnetic monopole field nonminimally coupled to curvature , 2018, Journal of Cosmology and Astroparticle Physics.

[32]  R. Narayan,et al.  Shadows of spherically symmetric black holes and naked singularities , 2018, Monthly Notices of the Royal Astronomical Society.

[33]  F. Rahaman,et al.  Strong lensing of a regular black hole with an electrodynamics source , 2018, General Relativity and Gravitation.

[34]  C. Herdeiro,et al.  Shadows and strong gravitational lensing: a brief review , 2018, General Relativity and Gravitation.

[35]  A. Övgün,et al.  Falsifying cosmological models based on a non-linear electrodynamics , 2017, The European Physical Journal C.

[36]  A. Banerjee,et al.  Semiclassical gravitational effects on the gravitational lensing in the spacetime of topological defects , 2017, 1709.00227.

[37]  H. Arakida Light deflection and Gauss–Bonnet theorem: definition of total deflection angle and its applications , 2017, 1708.04011.

[38]  P. Boonserm,et al.  Greybody factor for black holes in dRGT massive gravity , 2017, The European Physical Journal C.

[39]  S. Kruglov Black hole as a magnetic monopole within exponential nonlinear electrodynamics , 2017, 1703.02029.

[40]  A. Övgün Inflation and acceleration of the universe by nonlinear magnetic monopole fields , 2016, 1604.01837.

[41]  S. H. Hendi,et al.  Extremal Einstein–Born–Infeld black holes in dilaton gravity , 2015 .

[42]  M. Visser,et al.  Greybody factors for Myers–Perry black holes , 2014, 1405.5678.

[43]  P. Kuhfittig Gravitational lensing of wormholes in the galactic halo region , 2013, 1311.2274.

[44]  C. Bambi,et al.  Rotating regular black holes , 2013, 1302.6075.

[45]  P. Boonserm,et al.  Bounding the greybody factors for the Reissner-Nordström black holes , 2013, 1301.7527.

[46]  M. Werner Gravitational lensing in the Kerr-Randers optical geometry , 2012, 1205.3876.

[47]  Jiliang Jing,et al.  Greybody factor for a scalar field coupling to Einstein's tensor , 2010, 1005.5601.

[48]  M. Visser,et al.  Bounding the Bogoliubov coefficients , 2008, 0801.0610.

[49]  S. Ansoldi,et al.  Non-commutative geometry inspired charged black holes , 2006, gr-qc/0612035.

[50]  S. Fernando Greybody factors of charged dilaton black holes in 2 + 1 dimensions , 2004, hep-th/0407163.

[51]  C. Kochanek,et al.  The Optical Properties of Gravitational Lens Galaxies as a Probe of Galaxy Structure and Evolution , 1997, astro-ph/9708161.

[52]  A. Einstein LENS-LIKE ACTION OF A STAR BY THE DEVIATION OF LIGHT IN THE GRAVITATIONAL FIELD. , 1936, Science.

[53]  L. Infeld,et al.  Foundations of the New Field Theory , 1933, Nature.

[54]  M. Sharif,et al.  Equatorial gravitational lensing by accelerating and rotating black hole with NUT parameter , 2015 .