Fastest Mixing Markov Chain on a Graph

We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e., the mixing rate of the Markov chain, is determined by the second largest eigenvalue modulus (SLEM) of the transition probability matrix. In this paper we address the problem of assigning probabilities to the edges of the graph in such a way as to minimize the SLEM, i.e., the problem of finding the fastest mixing Markov chain on the graph. We show that this problem can be formulated as a convex optimization problem, which can in turn be expressed as a semidefinite program (SDP). This allows us to easily compute the (globally) fastest mixing Markov chain for any graph with a modest number of edges (say, $1000$) using standard numerical methods for SDPs. Larger problems can be solved by exploiting various types of symmetry and structure in the problem, and far larger problems (say, 100,000 edges) can be solved using a subgradient method we describe. We compare the fastest mixing Markov chain to those obtained using two commonly used heuristics: the maximum-degree method, and the Metropolis--Hastings algorithm. For many of the examples considered, the fastest mixing Markov chain is substantially faster than those obtained using these heuristic methods. We derive the Lagrange dual of the fastest mixing Markov chain problem, which gives a sophisticated method for obtaining (arbitrarily good) bounds on the optimal mixing rate, as well as the optimality conditions. Finally, we describe various extensions of the method, including a solution of the problem of finding the fastest mixing reversible Markov chain, on a fixed graph, with a given equilibrium distribution.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  N. S. Barnett,et al.  Private communication , 1969 .

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  D. Vere-Jones Markov Chains , 1972, Nature.

[5]  P. Wolfe,et al.  The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices , 1975 .

[6]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[7]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[8]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[9]  D. Aldous Random walks on finite groups and rapidly mixing markov chains , 1983 .

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  Editors , 1986, Brain Research Bulletin.

[12]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[13]  P. Diaconis Group representations in probability and statistics , 1988 .

[14]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[15]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[16]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[17]  Michael L. Overton,et al.  Large-Scale Optimization of Eigenvalues , 1990, SIAM J. Optim..

[18]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[19]  Alistair Sinclair,et al.  Algorithms for Random Generation and Counting: A Markov Chain Approach , 1993, Progress in Theoretical Computer Science.

[20]  Michael L. Overton,et al.  Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices , 2015, Math. Program..

[21]  D. Stroock Logarithmic Sobolev inequalities for gibbs states , 1993 .

[22]  L. Gross Logarithmic Sobolev inequalities and contractivity properties of semigroups , 1993 .

[23]  Ravi Kannan,et al.  Markov chains and polynomial time algorithms , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[24]  Yinyu Ye Interior-Point Polynomial Algorithms in Convex Programming (Y. Nesterov and A. Nemirovskii) , 1994, SIAM Rev..

[25]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[26]  Jeffrey S. Rosenthal,et al.  Convergence Rates for Markov Chains , 1995, SIAM Rev..

[27]  Alexander Shapiro,et al.  On Eigenvalue Optimization , 1995, SIAM J. Optim..

[28]  P. Diaconis,et al.  Rectangular Arrays with Fixed Margins , 1995 .

[29]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[30]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[31]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[32]  Adrian S. Lewis,et al.  Convex Analysis on the Hermitian Matrices , 1996, SIAM J. Optim..

[33]  Nabil Kahale,et al.  A semidefinite bound for mixing rates of Markov chains , 1996, Random Struct. Algorithms.

[34]  S. Muthukrishnan,et al.  Engineering Diffusive Load Balancing Algorithms Using Experiments , 1997, IRREGULAR.

[35]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[36]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[37]  Persi Diaconis,et al.  What Do We Know about the Metropolis Algorithm? , 1998, J. Comput. Syst. Sci..

[38]  Adrian S. Lewis,et al.  Nonsmooth analysis of eigenvalues , 1999, Math. Program..

[39]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[40]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[41]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[42]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[43]  S. A. Miller,et al.  A bundle method for efficiently solving large structured linear matrix inequalities , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[44]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[45]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[46]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[47]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[48]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[49]  P. Diaconis,et al.  A geometric interpretation of the Metropolis-Hastings algorithm , 2001 .

[50]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[51]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[52]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[53]  Yung-Pin Chen,et al.  An Application of Markov Chain Monte Carlo to Community Ecology , 2003, Am. Math. Mon..

[54]  Stephen P. Boyd,et al.  Symmetry Analysis of Reversible Markov Chains , 2005, Internet Math..

[55]  Stephen P. Boyd,et al.  Fastest Mixing Markov Chain on a Path , 2006, Am. Math. Mon..

[56]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[57]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .