Ultrahigh Enhancement of Electromagnetic Fields by Exciting Localized with Extended Surface Plasmons

Excitation of localized surface plasmons (LSPs) of metal nanoparticles (NPs) residing on a flat metal film has attracted great attentions recently due to the enhanced electromagnetic (EM) fields found to be higher than the case of NPs on a dielectric substrate. In the present work, it is shown that even much higher enhancement of EM fields is obtained by exciting the LSPs through extended surface plasmons (ESPs) generated at the metallic film surface using the Kretschmann-Raether configuration. We show that the largest EM field enhancement and the highest surface-enhanced fluorescence intensity are obtained when the incidence angle is the ESP resonance angle of the underlying metal film. The finite-difference time-domain simulations indicate that excitation of LSPs using ESPs can generate 1-3 orders higher EM field intensity than direct excitation of the LSPs using incidence from free space. The ultrahigh enhancement is attributed to the strong confinement of the ESP waves in the vertical direction. The drastically intensified EM fields are significant for highly-sensitive refractive index sensing, surface-enhanced spectroscopies, and enhancing the efficiency of optoelectronic devices.

[1]  C. Kocabas,et al.  Strong coupling between localized and propagating plasmon polaritons. , 2015, Optics letters.

[2]  Cheng Zong,et al.  Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration. , 2015, The journal of physical chemistry letters.

[3]  Michael Canva,et al.  Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration , 2015 .

[4]  P. Kik,et al.  Gap-Plasmon Enhanced Gold Nanoparticle Photoluminescence , 2014 .

[5]  Anran Li,et al.  Large-volume hot spots in gold spiky nanoparticle dimers for high-performance surface-enhanced spectroscopy. , 2014, Nanoscale.

[6]  Ibrahim Abdulhalim,et al.  SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin. , 2014, Small.

[7]  Ibrahim Abdulhalim,et al.  Plasmonic sensing using metallic nano-sculptured thin films. , 2014, Small.

[8]  A. Dhawan,et al.  Full-wave electromagentic analysis of a plasmonic nanoparticle separated from a plasmonic film by a thin spacer layer. , 2014, Optics express.

[9]  C. Geddes,et al.  Spectral shifts in metal-enhanced fluorescence , 2014 .

[10]  Weiping Cai,et al.  Huge local electric field enhancement in hybrid plasmonic arrays. , 2014, Optics letters.

[11]  C. Vijayan,et al.  Plasmonically Tunable Blue-Shifted Emission from Coumarin 153 in Ag Nanostructure Random Media: A Demonstration of Fast Dynamic Surface-Enhanced Fluorescence , 2014, Plasmonics.

[12]  Hong Wei,et al.  Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. , 2013, Nanoscale.

[13]  P. Kik,et al.  Wide-Band Spectral Control of Au Nanoparticle Plasmon Resonances on a Thermally and Chemically Robust Sensing Platform , 2013 .

[14]  Anran Li,et al.  Synthesis of Spiky Ag–Au Octahedral Nanoparticles and Their Tunable Optical Properties , 2013 .

[15]  S. Maier,et al.  Use of a gold reflecting-layer in optical antenna substrates for increase of photoluminescence enhancement. , 2013, Optics express.

[16]  K. S. Shin,et al.  Enhanced Raman Scattering in Gaps Formed by Planar Au and Au/Ag Alloy Nanoparticles , 2013 .

[17]  Shuping Xu,et al.  Active modulation of wavelength and radiation direction of fluorescence via liquid crystal-tuned surface plasmons , 2013 .

[18]  S. Elliott,et al.  Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants , 2013, Nanotechnology.

[19]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[20]  I. Abdulhalim,et al.  Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation. , 2012, Optics letters.

[21]  David R. Smith,et al.  Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. , 2012, Nano letters.

[22]  Martin Moskovits,et al.  Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. , 2012, Nano letters.

[23]  C. Du,et al.  Surface-Enhanced Raman Scattering from Individual Au Nanoparticles on Au Films , 2012, Plasmonics.

[24]  Richard F. Haglund,et al.  Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. , 2012, ACS nano.

[25]  I. Abdulhalim,et al.  Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films , 2012 .

[26]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[27]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[28]  Ming C. Wu,et al.  Radiation engineering of optical antennas for maximum field enhancement. , 2011, Nano letters.

[29]  Christine H. Moran,et al.  Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. , 2011, Angewandte Chemie.

[30]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[31]  K. Uosaki,et al.  Plasmonic enhancement of photoinduced uphill electron transfer in a molecular monolayer system. , 2011, Angewandte Chemie.

[32]  F. J. García de abajo,et al.  Gap and Mie plasmons in individual silver nanospheres near a silver surface. , 2011, Nano letters.

[33]  David R. Smith,et al.  Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. , 2010, Nano letters.

[34]  Javier Aizpurua,et al.  Gold nanoring trimers: a versatile structure for infrared sensing. , 2010, Optics express.

[35]  L. Liz‐Marzán,et al.  Light concentration at the nanometer scale , 2010 .

[36]  George C Schatz,et al.  Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[37]  Ibrahim Abdulhalim,et al.  Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors , 2010 .

[38]  C. Mirkin,et al.  Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods. , 2010, Nano letters.

[39]  Pieter G. Kik,et al.  Single Particle Spectroscopy Study of Metal-Film-Induced Tuning of Silver Nanoparticle Plasmon Resonances† , 2010 .

[40]  Sung-Hyun Ahn,et al.  Surface-enhanced Raman scattering from a single nanoparticle-plane junction. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[41]  James Pond,et al.  Systematic Computational Study of the Effect of Silver Nanoparticle Dimers on the Coupled Emission from Nearby Fluorophores. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[42]  David R. Smith,et al.  Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. , 2008, Nano letters.

[43]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[44]  Chad A Mirkin,et al.  Rationally designed nanostructures for surface-enhanced Raman spectroscopy. , 2008, Chemical Society reviews.

[45]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[46]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[47]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[48]  J. Hafner,et al.  Plasmon resonances of a gold nanostar. , 2007, Nano letters.

[49]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticles near Metallic Surfaces , 2004 .

[50]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[51]  J. Lakowicz Radiative decay engineering: biophysical and biomedical applications. , 2001, Analytical biochemistry.

[52]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[53]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[54]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[55]  A. Fletcher,et al.  Fluorescence quantum yields of some rhodamine dyes , 1982 .

[56]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .