The Homological Nature of Entropy

We propose that entropy is a universal co-homological class in a theory associated to a family of observable quantities and a family of probability distributions. Three cases are presented: (1) classical probabilities and random variables; (2) quantum probabilities and observable operators; (3) dynamic probabilities and observation trees. This gives rise to a new kind of topology for information processes, that accounts for the main information functions: entropy, mutual-informations at all orders, and Kullback–Leibler divergence and generalizes them in several ways. The article is divided into two parts, that can be read independently. In the first part, the introduction, we provide an overview of the results, some open questions, future results and lines of research, and discuss briefly the application to complex data. In the second part we give the complete definitions and proofs of the theorems A, C and E in the introduction, which show why entropy is the first homological invariant of a structure of information in four contexts: static classical or quantum probability, dynamics of classical or quantum strategies of observation of a finite system.

[1]  P. M. Lee On the Axioms of Information Theory , 1964 .

[2]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .

[3]  J. Beck,et al.  TRIPLES, ALGEBRAS AND COHOMOLOGY , 1967 .

[4]  Chennat Gopalakrishnan On Entropy , 2009 .

[5]  C. Isham,et al.  Classical and quantum probabilities as truth values , 2011, 1102.2213.

[6]  Tom Leinster,et al.  A Characterization of Entropy in Terms of Information Loss , 2011, Entropy.

[7]  Shinya Kuroda,et al.  Robustness and Compensation of Information Transmission of Signaling Pathways , 2013, Science.

[8]  Misha Gromov,et al.  In a Search for a Structure, Part 1: On Entropy , 2013 .

[9]  J. L. Cathelineau Sur l'homologie de $\mathrm{SL}_2$ a coefficients dans l'action adjointe. , 1988 .

[10]  Julien Bichon,et al.  Algèbre homologique , 2014 .

[11]  Hu Kuo Ting,et al.  On the Amount of Information , 1962 .

[12]  A. N. Kolmogorov Combinatorial foundations of information theory and the calculus of probabilities , 1983 .

[13]  Philippe Elbaz-Vincent,et al.  On Poly(ana)logs I , 2000, Compositio Mathematica.

[14]  J. Watkinson,et al.  Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1 , 2010, BMC Medical Genomics.

[15]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[16]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[17]  Lizhen Ji,et al.  Compactifications of Symmetric and Locally Symmetric Spaces , 2005 .

[18]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[19]  Ezra Getzler,et al.  Homotopy algebra and iterated integrals for double loop spaces , 1994 .

[20]  Te Sun Han,et al.  Linear Dependence Structure of the Entropy Space , 1975, Inf. Control..

[21]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[22]  Towards a Group-Theoretical Interpretation of Mechanics , 2013 .

[23]  Pierre Gabriel Objets injectifs dans les catégories abéliennes , 1959 .

[24]  H. Tverberg A New Derivation of the Information Function. , 1958 .

[25]  M. Kapranov,et al.  Koszul duality for Operads , 1994, 0709.1228.

[26]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[27]  P. Meyer,et al.  Quantum Probability for Probabilists , 1993 .

[28]  Raymond W. Yeung,et al.  Information Theory and Network Coding , 2008 .

[29]  M. Kapranov,et al.  Koszul duality for Operads , 1994, 0709.1228.

[30]  Alexander Grothendieck,et al.  Sur quelques points d'algèbre homologique, I , 1957 .

[31]  Tian Zheng,et al.  Inference of Regulatory Gene Interactions from Expression Data Using Three‐Way Mutual Information , 2009, Annals of the New York Academy of Sciences.

[32]  A. P. Beltyukov,et al.  On the amount of information , 2011, Pattern Recognition and Image Analysis.

[33]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[34]  P. Baudot,et al.  Topological forms of information , 2015 .

[35]  Hiroyuki Matsuda Information theoretic characterization of frustrated systems , 2001 .

[36]  J. P. May,et al.  The geometry of iterated loop spaces , 1972 .

[37]  Vladimir A. Smirnov,et al.  The homology of iterated loop spaces , 2000 .