A preference-based multi-objective evolutionary algorithm using preference selection radius

In traditional preference-based multi-objective optimization, the reference points in different regions often impact the performance of the algorithms so that the region of interest (ROI) cannot easily be obtained by the decision maker (DM). In dealing with many-objective optimization problems, the objective space is filled with non-dominated solutions in terms of the Pareto dominance relationship, since the dominance relationship cannot differentiate the mutual relationship between the solutions. To solve the above problems, this paper proposes a new selection mechanism with two main steps. First, we construct a preference radius to divide the whole population into two distinct parts: a dispreferred solution set and a preferred solution set. Second, the algorithm selects the optimal solutions in the preferred solution set by means of the Pareto dominance relationship. If the number of the obtained solutions does not satisfy the quantity’s upper limit, it selects those dispreferred solutions which have smaller distances to the reference direction until the number matches the size of the population. Experimental results show that the algorithm applying the mechanism is able to adapt to different reference points in varying regions in objective space. Moreover, it assists the DM in obtaining different sizes of ROI by adjusting the length of the radius of ROI. In dealing with many-objective problems, the mechanism can dramatically contribute to the convergence of an algorithm proposed in this paper, in comparison with other two state-of-the-art algorithms: g-dominance and r-dominance. Thus, this paper provides a new way to deal with user preference-based multi-objective optimization problems.

[1]  Zbigniew Michalewicz,et al.  Variants of Evolutionary Algorithms for Real-World Applications , 2011, Variants of Evolutionary Algorithms for Real-World Applications.

[2]  Jinhua Zheng,et al.  Decomposing the user-preference in multiobjective optimization , 2016, Soft Comput..

[3]  Peter J. Fleming,et al.  Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[4]  David A. Van Veldhuizen,et al.  Evolutionary Computation and Convergence to a Pareto Front , 1998 .

[5]  Markus Olhofer,et al.  Reference vector based a posteriori preference articulation for evolutionary multiobjective optimization , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[6]  Rubén Saborido,et al.  A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm , 2015, J. Glob. Optim..

[7]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[8]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[9]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[10]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[11]  Peter J. Fleming,et al.  Preference-inspired co-evolutionary algorithms using weight vectors , 2015, Eur. J. Oper. Res..

[12]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[13]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[14]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[15]  Kalyanmoy Deb,et al.  Reference point based multi-objective optimization using evolutionary algorithms , 2006, GECCO.

[16]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[17]  Jürgen Branke,et al.  Learning Value Functions in Interactive Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[18]  Carlos A. Coello Coello,et al.  A New Proposal for Multiobjecive Optimization Using Particle Swarm Optimization and Rough Sets Theory , 2006, PPSN.

[19]  Kalyanmoy Deb,et al.  Distributed Computing of Pareto-Optimal Solutions with Evolutionary Algorithms , 2003, EMO.

[20]  Kalyanmoy Deb,et al.  An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions , 2010, IEEE Transactions on Evolutionary Computation.

[21]  Kalyanmoy Deb,et al.  A review of hybrid evolutionary multiple criteria decision making methods , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[22]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[23]  Cui Xun,et al.  A Preference-Based Multi-Objective Concordance Genetic Algorithm , 2005 .

[24]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[25]  Peter J. Fleming,et al.  A Diversity Management Operator for Evolutionary Many-Objective Optimisation , 2009, EMO.

[26]  Kalyanmoy Deb,et al.  Evolutionary multi-criterion optimization , 2010, GECCO '10.

[27]  Bernhard Sendhoff,et al.  Incorporation Of Fuzzy Preferences Into Evolutionary Multiobjective Optimization , 2002, GECCO.

[28]  Khaled Ghédira,et al.  The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making , 2010, IEEE Transactions on Evolutionary Computation.

[29]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[30]  Kalyanmoy Deb,et al.  Improving convergence of evolutionary multi-objective optimization with local search: a concurrent-hybrid algorithm , 2011, Natural Computing.

[31]  Timo Aittokoski,et al.  User preference extraction using dynamic query sliders in conjunction with UPS-EMO algorithm , 2011, ArXiv.

[32]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[33]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[34]  Peter J. Fleming,et al.  Multiobjective genetic algorithms made easy: selection sharing and mating restriction , 1995 .

[35]  Peter J. Fleming,et al.  The iPICEA-g: a new hybrid evolutionary multi-criteria decision making approach using the brushing technique , 2015, Eur. J. Oper. Res..

[36]  Nicola Beume,et al.  On the Complexity of Computing the Hypervolume Indicator , 2009, IEEE Transactions on Evolutionary Computation.

[37]  Ian Griffin,et al.  A Comparative Study of Progressive Preference Articulation Techniques for Multiobjective Optimisation , 2007, EMO.

[38]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[39]  Peter J. Fleming,et al.  Evolutionary Multi-Criterion Optimization , 2013, Lecture Notes in Computer Science.

[40]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[41]  Andrzej Jaszkiewicz,et al.  The 'Light Beam Search' approach - an overview of methodology and applications , 1999, Eur. J. Oper. Res..

[42]  Peter J. Fleming,et al.  Evolutionary many-objective optimisation: an exploratory analysis , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[43]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[44]  Kaisa Miettinen,et al.  An Interactive Simple Indicator-Based Evolutionary Algorithm (I-SIBEA) for Multiobjective Optimization Problems , 2015, EMO.

[45]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[46]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[47]  Carlos A. Coello Coello,et al.  A Fitness Granulation Approach for Large-Scale Structural Design Optimization , 2012, Variants of Evolutionary Algorithms for Real-World Applications.

[48]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms , 1993 .