Composable controllers for physics-based character animation

An ambitious goal in the area of physics-based computer animation is the creation of virtual actors that autonomously synthesize realistic human motions and possess a broad repertoire of lifelike motor skills. To this end, the control of dynamic, anthropomorphic figures subject to gravity and contact forces remains a difficult open problem. We propose a framework for composing controllers in order to enhance the motor abilities of such figures. A key contribution of our composition framework is an explicit model of the “pre-conditions” under which motor controllers are expected to function properly. We demonstrate controller composition with pre-conditions determined not only manually, but also automatically based on Support Vector Machine (SVM) learning theory. We evaluate our composition framework using a family of controllers capable of synthesizing basic actions such as balance, protective stepping when balance is disturbed, protective arm reactions when falling, and multiple ways of standing up after a fall. We furthermore demonstrate these basic controllers working in conjunction with more dynamic motor skills within a prototype virtual stunt-person. Our composition framework promises to enable the community of physics-based animation practitioners to easily exchange motor controllers and integrate them into dynamic characters.

[1]  J. Gillis,et al.  Classical dynamics of particles and systems , 1965 .

[2]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[3]  J. W. Humberston Classical mechanics , 1980, Nature.

[4]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Vladimir Vapnik,et al.  Estimation of Dependences Based on Empirical Data: Springer Series in Statistics (Springer Series in Statistics) , 1982 .

[6]  M C Do,et al.  A biomechanical study of balance recovery during the fall forward. , 1982, Journal of biomechanics.

[7]  Zeltzer,et al.  Motor Control Techniques for Figure Animation , 1982, IEEE Computer Graphics and Applications.

[8]  W. Reeves Particle Systems—a Technique for Modeling a Class of Fuzzy Objects , 1983, TOGS.

[9]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[10]  Brian A. Barsky,et al.  Using dynamic analysis to animate articulated bodies such as humans and robots , 1985 .

[11]  T. McMahon The role of compliance in mammalian running gaits. , 1985, The Journal of experimental biology.

[12]  Ken Perlin,et al.  [Computer Graphics]: Three-Dimensional Graphics and Realism , 2022 .

[13]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[14]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[15]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[16]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[17]  Gavin S. P. Miller,et al.  The motion dynamics of snakes and worms , 1988, SIGGRAPH.

[18]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[19]  Rodney A. Brooks,et al.  Learning to Coordinate Behaviors , 1990, AAAI.

[20]  Jessica K. Hodgins,et al.  Biped Gymnastics , 1988, Int. J. Robotics Res..

[21]  David A. Winter,et al.  Biomechanics and Motor Control of Human Movement , 1990 .

[22]  Eugene Fiume,et al.  Reusable motion synthesis using state-space controllers , 1990, SIGGRAPH.

[23]  W S Levine,et al.  An optimal control model for maximum-height human jumping. , 1990, Journal of biomechanics.

[24]  Richard A. Schmidt,et al.  Motor Learning and Performance , 1991 .

[25]  Jessica K. Hodgins,et al.  Biped gait transitions , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[26]  M. Pandy,et al.  Optimal muscular coordination strategies for jumping. , 1991, Journal of biomechanics.

[27]  Michael F. Cohen,et al.  Interactive spacetime control for animation , 1992, SIGGRAPH.

[28]  M. van de Panne,et al.  A controller for the dynamic walk of a biped across variable terrain , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[29]  R. Fitzpatrick,et al.  Ankle stiffness of standing humans in response to imperceptible perturbation: reflex and task‐dependent components. , 1992, The Journal of physiology.

[30]  David Baraff,et al.  Dynamic Simulation of Non-penetrating Rigid Bodies , 1992 .

[31]  R. Fitzpatrick,et al.  Postural proprioceptive reflexes in standing human subjects: bandwidth of response and transmission characteristics. , 1992, The Journal of physiology.

[32]  Michiel van de Panne,et al.  Virtual Wind-up Toys for Animation , 1993 .

[33]  Norman I. Badler,et al.  Simulating humans: computer graphics animation and control , 1993 .

[34]  B. Day,et al.  Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway. , 1993, The Journal of physiology.

[35]  Michiel van de Panne,et al.  Sensor-actuator networks , 1993, SIGGRAPH.

[36]  Joe Marks,et al.  Spacetime constraints revisited , 1993, SIGGRAPH.

[37]  M. V. D. Panne,et al.  Synthesizing Parameterized Motions , 1994 .

[38]  Zicheng Liu,et al.  Hierarchical spacetime control , 1994, SIGGRAPH.

[39]  Karl Sims,et al.  Evolving virtual creatures , 1994, SIGGRAPH.

[40]  John Francis Nethery Robotica: A Structured Environment for Computer Aided Design and Analysis of Robots , 1994 .

[41]  Demetri Terzopoulos,et al.  Artificial fishes: physics, locomotion, perception, behavior , 1994, SIGGRAPH.

[42]  Paul S. Heckbert,et al.  Graphics gems IV , 1994 .

[43]  R. Fitzpatrick,et al.  Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. , 1994, The Journal of physiology.

[44]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[45]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[46]  Demetri Terzopoulos,et al.  Automated learning of muscle-actuated locomotion through control abstraction , 1995, SIGGRAPH.

[47]  Lance Williams,et al.  Motion signal processing , 1995, SIGGRAPH.

[48]  Brian Mirtich,et al.  Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.

[49]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[50]  T. McMahon,et al.  Hip impact velocities and body configurations for voluntary falls from standing height. , 1996, Journal of biomechanics.

[51]  Brian Mirtich,et al.  Impulse-based dynamic simulation of rigid body systems , 1996 .

[52]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[53]  Jessica K. Hodgins,et al.  Animation of Human Diving , 1996, Comput. Graph. Forum.

[54]  Peter I. Corke,et al.  A robotics toolbox for MATLAB , 1996, IEEE Robotics Autom. Mag..

[55]  David Baraff,et al.  Linear-time dynamics using Lagrange multipliers , 1996, SIGGRAPH.

[56]  Michiel van de Panne,et al.  Parameterized gait synthesis , 1996, IEEE Computer Graphics and Applications.

[57]  Petros Faloutsos,et al.  Dynamic Free-Form Deformations for Animation Synthesis , 1997, IEEE Trans. Vis. Comput. Graph..

[58]  A. Witkin,et al.  Partitioned Dynamics , 1997 .

[59]  Y. Pai,et al.  Center of mass velocity-position predictions for balance control. , 1997, Journal of biomechanics.

[60]  James K. Hahn,et al.  Genetic Programming Evolution of Controllers for 3-D Character Animation , 1997 .

[61]  Jessica K. Hodgins,et al.  Adapting simulated behaviors for new characters , 1997, SIGGRAPH.

[62]  T. Mergner,et al.  Quantification of sensory information in human balance control , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).

[63]  Michael Gleicher,et al.  Retargetting motion to new characters , 1998, SIGGRAPH.

[64]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[65]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[66]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[67]  E. T. Hsiao,et al.  Common protective movements govern unexpected falls from standing height. , 1997, Journal of biomechanics.

[68]  Geoffrey E. Hinton,et al.  NeuroAnimator: fast neural network emulation and control of physics-based models , 1998, SIGGRAPH.

[69]  Brian Mirtich,et al.  V-Clip: fast and robust polyhedral collision detection , 1998, TOGS.

[70]  Daniel E. Koditschek,et al.  Sequential Composition of Dynamically Dexterous Robot Behaviors , 1999, Int. J. Robotics Res..

[71]  John Funge,et al.  Cognitive modeling: knowledge, reasoning and planning for intelligent characters , 1999, SIGGRAPH.

[72]  Tolga Capin,et al.  Avatars in Networked Virtual Environments , 1999 .

[73]  P. Gatev,et al.  Feedforward ankle strategy of balance during quiet stance in adults , 1999, The Journal of physiology.

[74]  Francisco J. Serón,et al.  Motion and behaviour modelling: state of art and new trends , 1999, The Visual Computer.

[75]  A Gollhofer,et al.  Modelling, simulation and optimisation of a human vertical jump. , 1999, Journal of biomechanics.

[76]  François Faure,et al.  Fast Iterative Refinement of Articulated Solid Dynamics , 1999, IEEE Trans. Vis. Comput. Graph..

[77]  Y C Pai,et al.  Simulated movement termination for balance recovery: can movement strategies be sought to maintain stability in the presence of slipping or forced sliding? , 1999, Journal of biomechanics.

[78]  Taku Komura,et al.  Calculation and visualization of the dynamic ability of the human body , 1999 .

[79]  Eugene Fiume,et al.  Interactive control for physically-based animation , 2000, SIGGRAPH.

[80]  Steven M. Seitz,et al.  Interactive manipulation of rigid body simulations , 2000, SIGGRAPH.

[81]  Tatsuo Arai,et al.  Mobile manipulation of humanoids-real-time control based on manipulability and stability , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[82]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[83]  Friedrich Pfeiffer,et al.  A biped robot that jogs , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[84]  David A. Forsyth,et al.  Sampling plausible solutions to multi-body constraint problems , 2000, SIGGRAPH.

[85]  Chee-Meng Chew,et al.  A general control architecture for dynamic bipedal walking , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[86]  Kazuhito Yokoi,et al.  Balance control of a piped robot combining off-line pattern with real-time modification , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[87]  Fred Delcomyn,et al.  Dynamics Simulation and Controller Interfacing for Legged Robots , 2000, Int. J. Robotics Res..

[88]  A Cappozzo,et al.  Sit-to-stand motor strategies investigated in able-bodied young and elderly subjects. , 2000, Journal of biomechanics.

[89]  Jessica K. Hodgins,et al.  Simulating leaping, tumbling, landing and balancing humans , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[90]  G. Wu,et al.  Distinguishing fall activities from normal activities by velocity characteristics. , 2000, Journal of biomechanics.

[91]  T. Çapin,et al.  Avatars in Networked Virtual Environments: Capin: Avatars , 2001 .