Enhancement-Mode$hboxSi_3hboxN_4hbox/AlGaN/GaN$MISHFETs

Enhancement-mode Si<sub>3</sub>N<sub>4</sub>/AlGaN/GaN metal-insulator-semiconductor HFETs (MISHFETs) with a 1-mum gate footprint are demonstrated by combining CF<sub>4</sub> plasma treatment technique and a two-step Si<sub>3</sub>N<sub>4</sub> deposition process. The threshold voltage has been shifted from -4 [for depletion-mode HFET] to 2 V using the techniques. A 15-nm Si<sub>3</sub>N<sub>4</sub> layer is inserted under the metal gate to provide additional isolation between the gate Schottky contact and AlGaN surface, which can lead to reduced gate leakage current and higher gate turn-on voltage. The two-step Si <sub>3</sub>N<sub>4</sub> deposition process is developed to reduce the gate coupling capacitances in the source and drain access region, while assuring the plasma-treated gate region being fully covered by the gate electrode. The forward turn-on gate bias of the MISHFETs is as large as 7 V, at which a maximum current density of 420 mA/mm is obtained. The small-signal RF measurements show that the current gain cutoff frequency (f<sub>T</sub>) and power gain cutoff frequency (f<sub>max</sub>) are 13.3 and 23.3 GHz, respectively

[1]  S. Denbaars,et al.  Power and linearity characteristics of GaN MISFETs on sapphire substrate , 2004, IEEE Electron Device Letters.

[2]  G. Simin,et al.  AlGaN/GaN HEMTs on SiC with f/sub T/ of over 120 GHz , 2002, IEEE Electron Device Letters.

[3]  U. Mishra,et al.  30-W/mm GaN HEMTs by field plate optimization , 2004, IEEE Electron Device Letters.

[4]  P. Neudeck,et al.  High-temperature electronics - a role for wide bandgap semiconductors? , 2002, Proc. IEEE.

[5]  Michael S. Shur,et al.  Si3N4/AlGaN/GaN–metal–insulator–semiconductor heterostructure field–effect transistors , 2001 .

[6]  T. Egawa,et al.  Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire , 2001 .

[7]  Adele E. Schmitz,et al.  GaN enhancement/depletion-mode FET logic for mixed signal applications , 2005 .

[8]  E. Kohn,et al.  Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs , 1999, IEEE Electron Device Letters.

[9]  A. Lunev,et al.  AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor , 2000, IEEE Electron Device Letters.

[10]  K. Lau,et al.  Monolithic integration of enhancement-and depletion-mode AlGaN/GaN HEMTs for GaN digital integrated circuits , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[11]  S. Keller,et al.  High-performance E-mode AlGaN/GaN HEMTs , 2006, IEEE Electron Device Letters.

[12]  Yugang Zhou,et al.  High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment , 2005, IEEE Electron Device Letters.

[13]  M. Kanamura,et al.  An over 100 W n-GaN/n-AlGaN/GaN MIS-HEMT power amplifier for wireless base station applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[14]  Toshiaki Matsui,et al.  Non-Recessed-Gate Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors with High RF Performance , 2004 .

[15]  A. Vescan,et al.  12 W/mm AlGaN-GaN HFETs on silicon substrates , 2004, IEEE Electron Device Letters.