Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2.

Tungsten ditelluride (WTe2) is a layered material that exhibits excellent magnetoresistance and thermoelectric behaviors, which are deeply related with its distorted orthorhombic phase that may critically affect the lattice dynamics of this material. Here, we report comprehensive characterization of Raman spectra of WTe2 from bulk to monolayer using experimental and computational methods. We find that mono and bi-layer WTe2 are easily identified by Raman spectroscopy since two or one Raman modes that are observed in higher-layer WTe2 are greatly suppressed below the noise level in the mono- and bi-layer WTe2, respectively. In addition, the frequency of in-plane A1(7) mode of WTe2 remains almost constant as the layer number decreases, while all the other Raman modes consistently blueshift, which is completely different from the vibrational behavior of hexagonal metal dichalcogenides. First-principles calculation validates experimental results and reveals that anomalous lattice vibrations in WTe2 are attributed to the formation of tungsten chains that make WTe2 structurally one-dimensional.

[1]  Brian M. Bersch,et al.  Tungsten Ditelluride: a layered semimetal , 2015, Scientific Reports.

[2]  Fabio Pietrucci,et al.  Ab initio study of the vibrational properties of crystalline TeO2: The alpha, beta, and gamma phases , 2006, 0803.4056.

[3]  A. Ferrari,et al.  Raman spectroscopy of shear and layer breathing modes in multilayer MoS2 , 2012, 1212.6796.

[4]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[5]  Yihong Wu,et al.  Interference enhancement of Raman signal of graphene , 2008, 0801.4595.

[6]  S. Pantelides,et al.  Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. , 2014, Nano letters.

[7]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[8]  A. H. Castro Neto,et al.  Electric field effect in ultrathin black phosphorus , 2014 .

[9]  Christian Kloc,et al.  Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. , 2013, Nanoscale.

[10]  K. Kamaras,et al.  Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy , 2008, 0812.0690.

[11]  Janna Börner,et al.  Real-time imaging of methane gas leaks using a single-pixel camera. , 2017, Optics express.

[12]  Liangmo Mei,et al.  Broadband Few‐Layer MoS2 Saturable Absorbers , 2014, Advanced materials.

[13]  N. G. Kalugin,et al.  Measurement of filling-factor-dependent magnetophonon resonances in graphene using Raman spectroscopy. , 2012, Physical review letters.

[14]  Feng Ding,et al.  Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe₂ , TaS₂ , and TaSe₂. , 2013, Small.

[15]  B. Sumpter,et al.  Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. , 2015, ACS nano.

[16]  Junsu Lee,et al.  Mode-locked, 1.94-μm, all-fiberized laser using WS₂ based evanescent field interaction. , 2015, Optics express.

[17]  Anomalous frequency trends in MoS 2 thin films attributed to surface effects , 2013, 1308.6393.

[18]  G. Galli,et al.  Electronic properties of MoS2 nanoparticles , 2007 .

[19]  H. Zeng,et al.  Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films , 2012, 1209.1775.

[20]  Gyu-Tae Kim,et al.  Few-layer black phosphorus field-effect transistors with reduced current fluctuation. , 2014, ACS nano.

[21]  Jonghwan Kim,et al.  Probing local strain at MX(2)-metal boundaries with surface plasmon-enhanced Raman scattering. , 2014, Nano letters.

[22]  S. Cheong,et al.  Fabrication and characterization of topological insulator Bi2Se3 nanocrystals , 2010, 1008.0396.

[23]  W. Frentrup,et al.  Electronic band structure of the layered compound Td − WTe$_2$ , 2000 .

[24]  W. G. Dawson,et al.  Electronic structure and crystallography of MoTe2 and WTe2 , 1987 .

[25]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[26]  Alfredo Pasquarello,et al.  Raman scattering intensities in α-quartz: A first-principles investigation , 2001 .

[27]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[28]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[29]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[30]  J. Shen,et al.  Stability of exfoliated Bi2Sr2DyxCa1-xCu2O8+δ studied by Raman microscopy , 2010, 1003.1979.

[31]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[32]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[33]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[34]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Kazuhito Tsukagoshi,et al.  Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe₂. , 2014, ACS nano.

[36]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[37]  Vincent Meunier,et al.  First-principles Raman spectra of MoS2, WS2 and their heterostructures. , 2014, Nanoscale.

[38]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[39]  Thomas Heine,et al.  Transition‐metal dichalcogenides for spintronic applications , 2014 .

[40]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[41]  Jun Zhang,et al.  Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. , 2013, Nano letters.

[42]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[43]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[44]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .