Excesses of Cosmic Ray Spectra from A Single Nearby Source

Growing evidence reveals universal hardening on various cosmic ray spectra, e.g. proton, positron, as well as antiproton fraction. Such universality may indicate they have a common origin. In this paper, we argue that these widespread excesses can be accounted for by a nearby supernova remnant surrounded by a giant molecular cloud. Secondary cosmic rays ($\rm p$, $\rm e^+$) are produced through the collisions between the primary cosmic ray nuclei from this supernova remnant and the molecular gas. Different from the background, which is produced by the ensemble of large amount of sources in the Milky Way, the local injected spectrum can be harder. The time-dependent transport of particles would make the propagated spectrum even harder. Under this scenario, the anomalies of both primary ($\rm p$, $\rm e^-$) and secondary ($\rm e^+$, $\rm \bar{p}/p$) cosmic rays can be properly interpreted. We further show that the TeV to sub-PeV anisotropy of proton is consistent with the observations if the local source is relatively young and lying at the anti-Galactic center direction.

[1]  J. R. Ḧorandel Revisiting the hardening of the cosmic-ray energy spectrum at TeV energies , 2017 .

[2]  R. Sagdeev,et al.  Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station. , 2016, Physical review letters.

[3]  H. Zong,et al.  Limits on dark matter from AMS-02 antiproton and positron fraction data , 2015, 1510.04032.

[4]  K. Ioka,et al.  Can we explain AMS-02 antiproton and positron excesses simultaneously by nearby supernovae without pulsars or dark matter? , 2015, 1505.01236.

[5]  R. Sagdeev,et al.  Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station. , 2015, Physical review letters.

[6]  C. Jin,et al.  Spatial-Dependent Diffusion of Cosmic Rays and the Ratio of pbar/p, B/C , 2015, 1509.08227.

[7]  Zhaolong Yu,et al.  Implications for dark matter annihilation from the AMS-02 $\bar{p}/p$ ratio , 2015, 1504.07230.

[8]  K. Hamaguchi,et al.  AMS-02 antiprotons from annihilating or decaying dark matter , 2015, 1504.05937.

[9]  S. Matsumoto,et al.  Wino Dark Matter in light of the AMS-02 2015 Data , 2015, 1504.05554.

[10]  Yu-feng Zhou,et al.  Upper limits on dark matter annihilation cross sections from the first AMS-02 antiproton data , 2015, 1504.04604.

[11]  V. Poulin,et al.  AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter , 2015, 1504.04276.

[12]  M. Kachelrieß,et al.  NEW CALCULATION OF ANTIPROTON PRODUCTION BY COSMIC RAY PROTONS AND NUCLEI , 2015, The Astrophysical journal.

[13]  R. Sagdeev,et al.  Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. , 2014, Physical review letters.

[14]  Q. Yuan,et al.  Quantitative study of the AMS-02 electron/positron spectra: Implications for pulsars and dark matter properties , 2014, 1409.6248.

[15]  Guo-ming Chen,et al.  Implications of the AMS-02 positron fraction in cosmic rays , 2013, 1304.1482.

[16]  Chang Jin,et al.  Dark Matter Particle Explorer:The First Chinese Cosmic Ray and Hard γ-ray Detector in Space , 2014 .

[17]  R. Sagdeev,et al.  High statistics measurement of the positron fraction in primary cosmic rays of 0.5-500 GeV with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.

[18]  R. Sagdeev,et al.  Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. , 2014, Physical review letters.

[19]  S. Thoudam,et al.  GeV-TeV cosmic-ray spectral anomaly as due to reacceleration by weak shocks in the Galaxy⋆ , 2014, 1404.3630.

[20]  D. Hooper,et al.  Constraining the origin of the rising cosmic ray positron fraction with the boron-to-carbon ratio , 2013, 1312.2952.

[21]  Q. Yuan,et al.  Status of dark matter detection , 2013, 1409.4590.

[22]  P. Lipari,et al.  First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV , 2013 .

[23]  Xuelei Chen,et al.  TeV cosmic-ray proton and helium spectra in the myriad model II , 2012, 1207.4670.

[24]  E. Amato,et al.  Spectral breaks as a signature of cosmic ray induced turbulence in the Galaxy. , 2012, Physical review letters.

[25]  R. Sagdeev,et al.  On the mechanism for breaks in the cosmic ray spectrum , 2012, 1206.1384.

[26]  R. Taillet,et al.  Variance of the Galactic nuclei cosmic ray flux , 2012, 1204.6289.

[27]  N. Tomassetti ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING , 2012, 1204.4492.

[28]  M. Cirelli Indirect searches for dark matter , 2012, 1202.1454.

[29]  G. Jóhannesson,et al.  TESTING THE ORIGIN OF HIGH-ENERGY COSMIC RAYS , 2011, 1108.1023.

[30]  E. Amato,et al.  Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition , 2011, 1105.4521.

[31]  E. Amato,et al.  Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy , 2011, 1105.4529.

[32]  S. Thoudam,et al.  Nearby supernova remnants and the cosmic ray spectral hardening at high energies , 2011, 1112.3020.

[33]  Q. Yuan,et al.  Cosmic ray spectral hardening due to dispersion of source injection spectra , 2011, 1109.0076.

[34]  P. Serpico Astrophysical models for the origin of the positron , 2011, 1108.4827.

[35]  Q. Yuan,et al.  Cosmic ray spectral hardening due to dispersion in the source injection spectra , 2011, 1104.3357.

[36]  G. C. Barbarino,et al.  PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra , 2011, Science.

[37]  N. B. Conklin,et al.  COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE FIRST CREAM FLIGHT , 2011, 1102.2575.

[38]  R. Trotta,et al.  CONSTRAINTS ON COSMIC-RAY PROPAGATION MODELS FROM A GLOBAL BAYESIAN ANALYSIS , 2010, 1011.0037.

[39]  S. Profumo Dissecting cosmic-ray electron-positron data with Occam’s razor: the role of known pulsars , 2008, 0812.4457.

[40]  K. Ioka,et al.  COSMIC-RAY HELIUM HARDENING , 2010, 1011.4405.

[41]  T. Stanev,et al.  THE ORIGIN OF COSMIC RAYS: EXPLOSIONS OF MASSIVE STARS WITH MAGNETIC WINDS AND THEIR SUPERNOVA MECHANISM , 2010, 1009.5592.

[42]  The Fermi-LAT Collaboration Searches for Cosmic-Ray Electron Anisotropies with the Fermi Large Area Telescope , 2010, 1008.5119.

[43]  J. T. Childers,et al.  DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA , 2010, 1004.1123.

[44]  Xiao-Gang He DARK MATTER ANNIHILATION EXPLANATION FOR e± EXCESSES IN COSMIC RAY , 2009, 0908.2908.

[45]  T. G. Guzik,et al.  Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results , 2009, 1101.3246.

[46]  Lars Bergström,et al.  Dark matter interpretation of recent electron and positron data. , 2009, Physical review letters.

[47]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[48]  K. Ioka,et al.  Is the PAMELA anomaly caused by supernova explosions near the Earth , 2009, 0903.5298.

[49]  P. Blasi Origin of the positron excess in cosmic rays. , 2009, Physical review letters.

[50]  P. Antonioli,et al.  Evolution of the cosmic ray anisotropy above 1014 eV , 2009, 0901.2740.

[51]  Astronomy,et al.  Discriminating different scenarios to account for the cosmic e ± excess by synchrotron and inverse Compton radiation , 2008, 0812.0522.

[52]  Q. Yuan,et al.  PAMELA data and leptonically decaying dark matter , 2008, 0811.0176.

[53]  T. Stanev,et al.  TeV gamma rays from Geminga and the origin of the GeV positron excess. , 2008, Physical review letters.

[54]  Pasquale Dario Serpico,et al.  Pulsars as the sources of high energy cosmic ray positrons , 2008, 0810.1527.

[55]  W. Keung,et al.  PAMELA and dark matter , 2008, 0809.0162.

[56]  J. W. Watts,et al.  An excess of cosmic ray electrons at energies of 300–800 GeV , 2008, Nature.

[57]  H. Kitamura,et al.  High-energy electron observations by PPB-BETS flight in Antarctica , 2008 .

[58]  T. Bringmann,et al.  New positron spectral features from supersymmetric dark matter: A way to explain the PAMELA data? , 2008, 0808.3725.

[59]  L. Maccione,et al.  Erratum: Cosmic-ray nuclei, antiprotons and gamma-rays in the galaxy: a new diffusion model , 2008, Journal of Cosmology and Astroparticle Physics.

[60]  Ams Collaboration Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01 , 2007, astro-ph/0703154.

[61]  A. Strong,et al.  Cosmic-Ray Propagation and Interactions in the Galaxy , 2007, astro-ph/0701517.

[62]  A. Strong,et al.  Observations of the Li, Be, and B isotopes and constraints on cosmic-ray propagation , 2006, astro-ph/0611301.

[63]  Danzengluobu,et al.  Large-Scale Sidereal Anisotropy of Galactic Cosmic-Ray Intensity Observed by the Tibet Air Shower Array , 2005, astro-ph/0505114.

[64]  M. Schubnell,et al.  New measurement of the cosmic-ray positron fraction from 5 to 15 GeV. , 2004, Physical review letters.

[65]  H. J. Gils,et al.  Large-Scale Cosmic-Ray Anisotropy with KASCADE , 2003, astro-ph/0312375.

[66]  K. Yoshida,et al.  The Most Likely Sources of High-Energy Cosmic-Ray Electrons in Supernova Remnants , 2003, astro-ph/0308470.

[67]  R. Taillet,et al.  Galactic cosmic ray nuclei as a tool for astroparticle physics , 2002, astro-ph/0212111.

[68]  G. Tarlé,et al.  Cosmic-Ray Electrons and Positrons from 1 to 100 GeV: Measurements with HEAT and Their Interpretation , 2001 .

[69]  L. Zhang,et al.  Cosmic-ray positrons from mature gamma-ray pulsars , 2001 .

[70]  M. Teshima,et al.  Anisotropy of the arrival direction of extensive air showers observed at Akeno , 1986 .

[71]  L. Drury An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas , 1983 .

[72]  C. Shen Pulsars and very high-energy cosmic-ray electrons , 1970 .

[73]  College Park,et al.  PARTICLE ACCELERATION AT ASTROPHYSICAL SHOCKS : A THEORY OF COSMIC RAY ORIGIN , 2022 .