A spin dependent recombination study of radiation induced defects at and near the Si/SiO/sub 2/ interface

A novel electron spin resonance technique, spin-dependent recombination (SDR), permits extremely rapid, high-signal-to-noise-ratio electron spin resonance (ESR) measurements of electrically active radiation damage centers in (relatively) hard MOS transistors in integrated circuits. SDR was used to observe the radiation-induced buildup of P/sub bo/ and E' centers at relatively low concentration in individual MOSFETs in integrated circuits with

[1]  A. S. Grove,et al.  Surface effects on p-n junctions: Characteristics of surface space-charge regions under non-equilibrium conditions , 1966 .

[2]  W. Fowler,et al.  Oxygen vacancy model for the E1′ center in SiO2 , 1974 .

[3]  B. Henderson,et al.  Optically induced electron spin resonance and spin‐dependent recombination in Si/SiO2 , 1984 .

[4]  P. Lenahan,et al.  Nature of the E’ deep hole trap in metal‐oxide‐semiconductor oxides , 1987 .

[5]  J. R. Szedon,et al.  THE EFFECT OF LOW‐ENERGY ELECTRON IRRADIATION OF METAL‐OXIDE‐SEMICONDUCTOR STRUCTURES , 1965 .

[6]  P. S. Winokur,et al.  Comparison of interface-state buildup in MOS capacitors subjected to penetrating and nonpenetrating radiation , 1976 .

[7]  Bruce E. Deal,et al.  ESR centers, interface states, and oxide fixed charge in thermally oxidized silicon wafers , 1979 .

[8]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[9]  Yoshio Nishi,et al.  Study of Silicon-Silicon Dioxide Structure by Electron Spin Resonance I , 1971 .

[10]  Michael Pepper,et al.  Spin‐dependent recombination in irradiated Si/SiO2 device structures , 1988 .

[11]  Patrick M. Lenahan,et al.  Electron‐spin‐resonance study of radiation‐induced paramagnetic defects in oxides grown on (100) silicon substrates , 1988 .

[12]  D. Lang,et al.  Observation of spin-dependent thermal emission from deep levels in semiconductors , 1983 .

[13]  G. Sigel,et al.  Radiation-Induced Defect Centers in Thermally Grown Oxide Films , 1975, IEEE Transactions on Nuclear Science.

[14]  D. Biegelsen,et al.  Spin-dependent photoconductivity in n-type and p-type amorphous silicon , 1977 .

[15]  K. H. Zaininger Irradiation of MIS Capacitors with High Energy Electrons , 1966 .

[16]  D. Fitzgerald Radiation-induced increase in surface recombination velocity of thermally oxidized silicon structures , 1966 .

[17]  I. Solomon,et al.  Explanation of the large spin-dependent recombination effect in semiconductors , 1978 .

[18]  W. C. Johnson,et al.  Radiation-Induced Trivalent Silicon Defect Buildup at the Si-SiO2 Interface in MOS Structures , 1981, IEEE Transactions on Nuclear Science.

[19]  R. H. Silsbee,et al.  Electron Spin Resonance in Neutron‐Irradiated Quartz , 1961 .

[20]  A. S. Grove,et al.  Surface recombination in semiconductors , 1968 .

[21]  P. Dressendorfer,et al.  Paramagnetic trivalent silicon centers in gamma irradiated metal‐oxide‐silicon structures , 1984 .

[22]  R. Pierret The gate-controlled diode s0 measurement and steady-state lateral current flow in deeply depleted MOS structures , 1974 .

[23]  W. K. Schubert,et al.  Effects of light and modulation frequency on spin-dependent trapping at silicon grain boundaries , 1984 .

[24]  D. Lepine,et al.  Spin-Dependent Recombination on Silicon Surface , 1972 .

[25]  Patrick M. Lenahan,et al.  An electron spin resonance study of radiation‐induced electrically active paramagnetic centers at the Si/SiO2 interface , 1983 .

[26]  Bruce E. Deal,et al.  Interface states and electron spin resonance centers in thermally oxidized (111) and (100) silicon wafers , 1981 .

[27]  P. M. Lenahan,et al.  Microstructural Variations in Radiation Hard and Soft Oxides Observed through Electron Spin Resonance , 1983, IEEE Transactions on Nuclear Science.

[28]  Patrick M. Lenahan,et al.  The Nature of the Deep Hole Trap in MOS Oxides , 1987, IEEE Transactions on Nuclear Science.

[29]  T. Sugano,et al.  Electron and hole traps in SiO/sub 2/ films thermally grown on Si substrates in ultra-dry oxygen , 1988 .

[30]  R. A. Weeks,et al.  Paramagnetic Resonance of Lattice Defects in Irradiated Quartz , 1956 .

[31]  F. J. Grunthaner,et al.  Radiation-Induced Defects in SiO2 as Determined with XPS , 1982, IEEE Transactions on Nuclear Science.

[32]  F. B. McLean A Framework for Understanding Radiation-Induced Interface States in SiO2 MOS Structures , 1980, IEEE Transactions on Nuclear Science.

[33]  Radiation-Induced Paramagnetic Defects in MOS Structures , 1982, IEEE Transactions on Nuclear Science.

[34]  T. R. Oldham,et al.  Spatial Dependence of Trapped Holes Determined from Tunneling Analysis and Measured Annealing , 1986, IEEE Transactions on Nuclear Science.

[35]  Patrick M. Lenahan,et al.  Hole traps and trivalent silicon centers in metal/oxide/silicon devices , 1984 .

[36]  I. Solomon,et al.  Spin-dependent recombination in a silicon p-n junction , 1976 .

[37]  T. Sugano,et al.  Electron spin resonance observation of the creation, annihilation, and charge state of the 74‐Gauss doublet in device oxides damaged by soft x rays , 1987 .

[38]  G. F. Derbenwick,et al.  Vacuum Ultraviolet Radiation Effects in SiO2 , 1971 .

[39]  L. Terman An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes , 1962 .

[40]  A. S. Grove,et al.  Effects of ionizing radiation on oxidized silicon surfaces and planar devices , 1967 .

[41]  B. F. Lewis,et al.  XPS Studies of Structure-Induced Radiation Effects at the Si/SiO2 Interface , 1980, IEEE Transactions on Nuclear Science.

[42]  D. Biegelsen,et al.  SURFACE-POTENTIAL DEPENDENCE OF EPR CENTERS AT THE Si/SiO2 INTERFACE , 1980 .

[43]  P. Dressendorfer,et al.  Effect of bias on radiation‐induced paramagnetic defects at the silicon‐silicon dioxide interface , 1982 .

[44]  R. Castagné,et al.  Description of the SiO2Si interface properties by means of very low frequency MOS capacitance measurements , 1971 .