On the Complexity of Randomly Weighted Multiplicative Voronoi Diagrams

We provide an $$O(n \,\hbox {polylog}\, n)$$O(npolylogn) bound on the expected complexity of the randomly weighted multiplicative Voronoi diagram of a set of $$n$$n sites in the plane, where the sites can be either points, interior disjoint convex sets, or other more general objects. Here the randomness is on the weight of the sites, not on their location. This compares favorably with the worst-case complexity of these diagrams, which is quadratic. As a consequence we get an alternative proof to that of Agarwal et al. (Discrete Comput Geom 54:551–582, 2014) of the near linear complexity of the union of randomly expanded disjoint segments or convex sets (with an improved bound on the latter). The technique we develop is elegant and should be applicable to other problems.

[1]  Wolfgang Weil,et al.  CHAPTER 5.2 – Stochastic Geometry , 1993 .

[2]  Haim Kaplan,et al.  The Overlay of Minimization Diagrams in a Randomized Incremental Construction , 2011, Discret. Comput. Geom..

[3]  Haim Kaplan,et al.  Union of Random Minkowski Sums and Network Vulnerability Analysis , 2014, Discret. Comput. Geom..

[4]  Micha Sharir Almost tight upper bounds for lower envelopes in higher dimensions , 1994, Discret. Comput. Geom..

[5]  Haim Kaplan,et al.  Union of Random Minkowski Sums and Network Vulnerability Analysis , 2013, Discrete & Computational Geometry.

[6]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[7]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.

[8]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[9]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[10]  Sariel Har-Peled On the Expected Complexity of Random Convex Hulls , 2011, ArXiv.

[11]  H. Raynaud Sur L'enveloppe convexe des nuages de points aleatoires dans Rn . I , 1970 .

[12]  Franz Aurenhammer,et al.  An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..

[13]  Sariel Har-Peled,et al.  On the Complexity of Randomly Weighted Voronoi Diagrams , 2014, SoCG.

[14]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[15]  Rolf Klein,et al.  Voronoi Diagrams and Delaunay Triangulations , 2013, Encyclopedia of Algorithms.

[16]  L. A. Santaló Introduction to integral geometry , 1953 .

[17]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[18]  R. Schneider,et al.  CHAPTER 5.1 – Integral Geometry , 1993 .

[19]  Rolf Klein,et al.  Abstract Voronoi Diagrams and their Applications , 1988, Workshop on Computational Geometry.

[20]  Sariel Har-Peled Geometric Approximation Algorithms , 2011 .

[21]  Rolf Klein,et al.  Abstract Voronoi diagrams revisited , 2009, Comput. Geom..

[22]  Sariel Har-Peled,et al.  From Proximity to Utility: A Voronoi Partition of Pareto Optima , 2016, Discret. Comput. Geom..

[23]  Sariel Har-Peled An output sensitive algorithm for discrete convex hulls , 1998, Comput. Geom..

[24]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.