On the Complexity of Randomly Weighted Multiplicative Voronoi Diagrams
暂无分享,去创建一个
[1] Wolfgang Weil,et al. CHAPTER 5.2 – Stochastic Geometry , 1993 .
[2] Haim Kaplan,et al. The Overlay of Minimization Diagrams in a Randomized Incremental Construction , 2011, Discret. Comput. Geom..
[3] Haim Kaplan,et al. Union of Random Minkowski Sums and Network Vulnerability Analysis , 2014, Discret. Comput. Geom..
[4] Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions , 1994, Discret. Comput. Geom..
[5] Haim Kaplan,et al. Union of Random Minkowski Sums and Network Vulnerability Analysis , 2013, Discrete & Computational Geometry.
[6] Ketan Mulmuley,et al. Computational geometry - an introduction through randomized algorithms , 1993 .
[7] Rex A. Dwyer. Higher-dimensional voronoi diagrams in linear expected time , 1989, SCG '89.
[8] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[9] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[10] Sariel Har-Peled. On the Expected Complexity of Random Convex Hulls , 2011, ArXiv.
[11] H. Raynaud. Sur L'enveloppe convexe des nuages de points aleatoires dans Rn . I , 1970 .
[12] Franz Aurenhammer,et al. An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..
[13] Sariel Har-Peled,et al. On the Complexity of Randomly Weighted Voronoi Diagrams , 2014, SoCG.
[14] A. Rényi,et al. über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .
[15] Rolf Klein,et al. Voronoi Diagrams and Delaunay Triangulations , 2013, Encyclopedia of Algorithms.
[16] L. A. Santaló. Introduction to integral geometry , 1953 .
[17] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[18] R. Schneider,et al. CHAPTER 5.1 – Integral Geometry , 1993 .
[19] Rolf Klein,et al. Abstract Voronoi Diagrams and their Applications , 1988, Workshop on Computational Geometry.
[20] Sariel Har-Peled. Geometric Approximation Algorithms , 2011 .
[21] Rolf Klein,et al. Abstract Voronoi diagrams revisited , 2009, Comput. Geom..
[22] Sariel Har-Peled,et al. From Proximity to Utility: A Voronoi Partition of Pareto Optima , 2016, Discret. Comput. Geom..
[23] Sariel Har-Peled. An output sensitive algorithm for discrete convex hulls , 1998, Comput. Geom..
[24] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.