Global synchronization criterion and adaptive synchronization for new chaotic system

This paper proposes two schemes of synchronization of two four-scorll chaotic attractor, a simple global synchronization and adaptive synchronization in the presence of unknown system parameters. Based on Lyapunov stability theory and matrix measure, a simple generic criterion is derived for global synchronization of four-scorll chaotic attractor system with a unidirectional linear error feedback coupling. This methods are applicable to a large class of chaotic systems where only a few algebraic inequalities are involved. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization method.

[1]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[2]  H. Agiza,et al.  Controlling and Synchronization of Rossler System with Uncertain Parameters , 2004 .

[3]  T. Liao,et al.  Adaptive Synchronization of Two Lorenz Systemsfn1 , 1998 .

[4]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[5]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[6]  Guo-Ping Jiang,et al.  A New Criterion for Chaos Synchronization Using Linear State Feedback Control , 2003, Int. J. Bifurc. Chaos.

[7]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[8]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[9]  Guanrong Chen,et al.  SYNCHRONIZATION STABILITY ANALYSIS OF THE CHAOTIC RÖSSLER SYSTEM , 1996 .

[10]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[11]  E. M. Elabbasy,et al.  Synchronization of Modified Chen System , 2004, Int. J. Bifurc. Chaos.

[12]  F. Ohle,et al.  Adaptive control of chaotic systems , 1990 .

[13]  H. Agiza,et al.  Synchronization of Rossler and Chen chaotic dynamical systems using active control , 2001, Physics Letters A.

[14]  Yinping Zhang,et al.  Some simple global synchronization criterions for coupled time-varying chaotic systems , 2004 .

[15]  Guo-Ping Jiang,et al.  A Global Synchronization Criterion for Coupled Chaotic Systems via Unidirectional Linear Error Feedback Approach , 2002, Int. J. Bifurc. Chaos.

[16]  H. Agiza,et al.  Adaptive synchronization of Lü system with uncertain parameters , 2004 .

[17]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[18]  Daizhan Cheng,et al.  A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.

[19]  Guanrong Chen,et al.  A simple global synchronization criterion for coupled chaotic systems , 2003 .

[20]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[21]  GUANRONG CHEN,et al.  Can a Three-Dimensional Smooth Autonomous Quadratic Chaotic System Generate a Single Four-scroll Attractor? , 2004, Int. J. Bifurc. Chaos.

[22]  Teh-Lu Liao,et al.  Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .