The Influence of Thickness on the Tensile Strength of Finnish Birch Veneers under Varying Load Angles
暂无分享,去创建一个
Peter Halbauer | U. Müller | C. Huber | J. Konnerth | Maximilian Pramreiter | A. Stadlmann | G. Baumann
[1] Cedou Kumpenza,et al. Influence of Fiber Deviation on Strength of Thin Birch (Betula pendula Roth.) Veneers , 2020, Materials.
[2] Thomas Jost,et al. Crash simulation of wood and composite wood for future automotive engineering , 2019, Wood Material Science & Engineering.
[3] Hui Wan,et al. Size Effect on the Elastic Mechanical Properties of Beech and Its Application in Finite Element Analysis of Wood Structures , 2019, Forests.
[4] C. Purba,et al. The influence of veneer thickness and knot proportion on the mechanical properties of laminated veneer lumber (LVL) made from secondary quality hardwood , 2019, European Journal of Wood and Wood Products.
[5] Stéphane Girardon,et al. Lathe check development and properties: effect of log soaking temperature, compression rate, cutting radius and cutting speed during peeling process of European beech (Fagus sylvatica L.) veneer , 2018, European Journal of Wood and Wood Products.
[6] N. As,et al. Micro-Tensile and Compression Strength of Scots Pine Wood and Comparison with Standard-Size Test Results , 2017 .
[7] Holger Militz,et al. Effect of size and geometry on strength values and MOE of selected hardwood species , 2017 .
[8] A. Dietzel,et al. Quantification of cracks and cross-section weakening in sliced veneers , 2017, European Journal of Wood and Wood Products.
[9] Haiqing Ren,et al. Size Effect on Strength Properties of Chinese Larch Dimension Lumber , 2015 .
[10] M. Hughes,et al. Simultaneous measurement of lathe check depth and the grain angle of birch (Betula pendula Roth) veneers using laser trans-illumination imaging , 2015, Wood Science and Technology.
[11] Josef Eberhardsteiner,et al. Discussion of common and new indicating properties for the strength grading of wooden boards , 2015, Wood Science and Technology.
[12] P. Niemz,et al. Uniaxial compression of rotationally symmetric Norway spruce samples: surface deformation and size effect , 2014, Wood Science and Technology.
[13] Vjekoslav Živković,et al. Microtensile Testing of Wood – Overview of Practical Aspects of Methodology , 2014 .
[14] Abdelhakim Daoui,et al. Influence of veneer quality on beech LVL mechanical properties , 2011 .
[15] A. Pfriem,et al. Influence of wood specimen thickness on its mechanical properties by tensile testing: solid wood versus veneer , 2011 .
[16] Robert Collet,et al. A Method of Lathe Checks Measurement; SMOF device and its software , 2010, European Journal of Wood and Wood Products.
[17] Gen-lin Tian,et al. Size effect on longitudinal MOE of microtomed wood sections and relevant theoretical explanation , 2009 .
[18] P. Bekhta,et al. Properties of plywood manufactured from compressed veneer as building material , 2009 .
[19] P. Glos,et al. Einfluß der Holzabmessungen auf die Zugfestigkeit von Bauschnittholz , 1996, Holz als Roh- und Werkstoff.
[20] Reijo Lappalainen,et al. Ultrasound evaluation of lathe check depth in birch veneer , 2009, European Journal of Wood and Wood Products.
[21] A. Wagenführ,et al. The mechanical behaviour of veneer subjected to bending and tensile loads , 2008, Holz als Roh- und Werkstoff.
[22] J. D. Barrett. Effect of Size on Tension Perpendicular-To-Grain Strength of Douglas-Fir , 2007 .
[23] H. Reinhardt,et al. Einfluß der Bauteilgröße in der linearen und nichtlinearen (Holz-)Bruchmechanik , 1993, Holz als Roh- und Werkstoff.
[24] Arvo Ylinen. Über den Einfluß der Probekörpergröße auf die Biegefestigkeit des Holzes , 1942, Holz als Roh- und Werkstoff.
[25] O. Graf,et al. Über die Veränderlichkeit der Zugfestigkeit von Fichtenholz mit der Form und Größe der Einspannköpfe der Normenkörper und mit Zunahme des Querschnitts der Probekörper , 1938, Holz als Roh- und Werkstoff.
[26] G. Schneeweiß. Der Einfluß der Abmessungen auf die Biegefestigkeit von Holzbalken , 2007, Holz als Roh- und Werkstoff.
[27] T. Astrup,et al. Size effect of glulam beams in tension perpendicular to grain , 2007, Wood Science and Technology.
[28] J. D. Barrett,et al. Incorporating size effects in the Tsai-Wu strength theory for Douglas-fir laminated veneer , 1998, Wood Science and Technology.
[29] Mikael Fonselius,et al. Effect of size on the bending strength of laminated veneer lumber , 1997, Wood Science and Technology.
[30] Ingo Burgert. Über die mechanische Bedeutung der Holzstrahlen | The mechanical relevance of wood rays , 2003 .
[31] P. Hoffmeyer,et al. A simple size effect model for tension perpendicular to the grain , 2003, Wood Science and Technology.
[32] I. Burgert,et al. The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees , 2001, Trees.
[33] I. Burgert,et al. Evidence for the strength function of rays in living trees , 1999, Holz als Roh- und Werkstoff.
[34] J. Fotsing,et al. Size Effect of two Cameroonian Hardwoods in Compression and Bending Parallel to the Grain , 1995 .
[35] Borg Madsen,et al. Size effects occurring in defect-free spruce – pine – fir bending specimens , 1991 .
[36] Borg Madsen,et al. Size effects in defect-free Douglas fir , 1990 .
[37] Andrew H. Buchanan,et al. Size effects in timber explained by a modified weakest link theory , 1986 .
[38] Thomas E. McLain,et al. Quantitative wood anatomy-relating anatomy to transverse tensile strength , 2007 .
[39] J. M. Dinwoodie,et al. Timber—a review of the structure‐mechanical property relationship , 1975 .
[40] E. Biblis. Effect of thickness of microtome sections on their tensile properties. , 2007 .