The Influence of Thickness on the Tensile Strength of Finnish Birch Veneers under Varying Load Angles

The development of high-performance, veneer-based wood composites is a topic of increasing importance due to the high design flexibility and the comparable mechanical performance to solid wood. Part of this improved mechanical performance can be contributed to the size effect present in wood. Based on previous findings in the literature, this size effect can be either strengthening or weakening. The presented study investigates the influence of thickness and load angle on the tensile strength and tensile stiffness of peeled veneers compared to thin sawn timber. Veneers with thicknesses of 0.5 ± 0.05 mm, 1.0 ± 0.05 mm and 1.5 ± 0.05 mm as well as sawn wood with thicknesses of 1.5 ± 0.1 mm, 3.0 ± 0.1 mm and 5.0 ± 0.1 mm were tested in tension under different load angles (0°, 45° and 90°). The results only partly confirm a size effect for strength parallel to the grain. The strength perpendicular to the grain increased significantly between 0.5 mm and 1.5 mm, with a significant decrease between 1.5 mm and 5.0 mm. The presence of lathe checks diminished the strength perpendicular to the grain of the veneers by about 70% compared to solid wood, partly overshadowing a possible strengthening effect. It was concluded that a transition from a strengthening to a weakening behaviour lies in the range of multiple millimetres, but further investigations are needed to quantify this zone more precisely. The presented results provide a useful basis for the development of veneer-based wood composites with a performance driven layer-thickness.

[1]  Cedou Kumpenza,et al.  Influence of Fiber Deviation on Strength of Thin Birch (Betula pendula Roth.) Veneers , 2020, Materials.

[2]  Thomas Jost,et al.  Crash simulation of wood and composite wood for future automotive engineering , 2019, Wood Material Science & Engineering.

[3]  Hui Wan,et al.  Size Effect on the Elastic Mechanical Properties of Beech and Its Application in Finite Element Analysis of Wood Structures , 2019, Forests.

[4]  C. Purba,et al.  The influence of veneer thickness and knot proportion on the mechanical properties of laminated veneer lumber (LVL) made from secondary quality hardwood , 2019, European Journal of Wood and Wood Products.

[5]  Stéphane Girardon,et al.  Lathe check development and properties: effect of log soaking temperature, compression rate, cutting radius and cutting speed during peeling process of European beech (Fagus sylvatica L.) veneer , 2018, European Journal of Wood and Wood Products.

[6]  N. As,et al.  Micro-Tensile and Compression Strength of Scots Pine Wood and Comparison with Standard-Size Test Results , 2017 .

[7]  Holger Militz,et al.  Effect of size and geometry on strength values and MOE of selected hardwood species , 2017 .

[8]  A. Dietzel,et al.  Quantification of cracks and cross-section weakening in sliced veneers , 2017, European Journal of Wood and Wood Products.

[9]  Haiqing Ren,et al.  Size Effect on Strength Properties of Chinese Larch Dimension Lumber , 2015 .

[10]  M. Hughes,et al.  Simultaneous measurement of lathe check depth and the grain angle of birch (Betula pendula Roth) veneers using laser trans-illumination imaging , 2015, Wood Science and Technology.

[11]  Josef Eberhardsteiner,et al.  Discussion of common and new indicating properties for the strength grading of wooden boards , 2015, Wood Science and Technology.

[12]  P. Niemz,et al.  Uniaxial compression of rotationally symmetric Norway spruce samples: surface deformation and size effect , 2014, Wood Science and Technology.

[13]  Vjekoslav Živković,et al.  Microtensile Testing of Wood – Overview of Practical Aspects of Methodology , 2014 .

[14]  Abdelhakim Daoui,et al.  Influence of veneer quality on beech LVL mechanical properties , 2011 .

[15]  A. Pfriem,et al.  Influence of wood specimen thickness on its mechanical properties by tensile testing: solid wood versus veneer , 2011 .

[16]  Robert Collet,et al.  A Method of Lathe Checks Measurement; SMOF device and its software , 2010, European Journal of Wood and Wood Products.

[17]  Gen-lin Tian,et al.  Size effect on longitudinal MOE of microtomed wood sections and relevant theoretical explanation , 2009 .

[18]  P. Bekhta,et al.  Properties of plywood manufactured from compressed veneer as building material , 2009 .

[19]  P. Glos,et al.  Einfluß der Holzabmessungen auf die Zugfestigkeit von Bauschnittholz , 1996, Holz als Roh- und Werkstoff.

[20]  Reijo Lappalainen,et al.  Ultrasound evaluation of lathe check depth in birch veneer , 2009, European Journal of Wood and Wood Products.

[21]  A. Wagenführ,et al.  The mechanical behaviour of veneer subjected to bending and tensile loads , 2008, Holz als Roh- und Werkstoff.

[22]  J. D. Barrett Effect of Size on Tension Perpendicular-To-Grain Strength of Douglas-Fir , 2007 .

[23]  H. Reinhardt,et al.  Einfluß der Bauteilgröße in der linearen und nichtlinearen (Holz-)Bruchmechanik , 1993, Holz als Roh- und Werkstoff.

[24]  Arvo Ylinen Über den Einfluß der Probekörpergröße auf die Biegefestigkeit des Holzes , 1942, Holz als Roh- und Werkstoff.

[25]  O. Graf,et al.  Über die Veränderlichkeit der Zugfestigkeit von Fichtenholz mit der Form und Größe der Einspannköpfe der Normenkörper und mit Zunahme des Querschnitts der Probekörper , 1938, Holz als Roh- und Werkstoff.

[26]  G. Schneeweiß Der Einfluß der Abmessungen auf die Biegefestigkeit von Holzbalken , 2007, Holz als Roh- und Werkstoff.

[27]  T. Astrup,et al.  Size effect of glulam beams in tension perpendicular to grain , 2007, Wood Science and Technology.

[28]  J. D. Barrett,et al.  Incorporating size effects in the Tsai-Wu strength theory for Douglas-fir laminated veneer , 1998, Wood Science and Technology.

[29]  Mikael Fonselius,et al.  Effect of size on the bending strength of laminated veneer lumber , 1997, Wood Science and Technology.

[30]  Ingo Burgert Über die mechanische Bedeutung der Holzstrahlen | The mechanical relevance of wood rays , 2003 .

[31]  P. Hoffmeyer,et al.  A simple size effect model for tension perpendicular to the grain , 2003, Wood Science and Technology.

[32]  I. Burgert,et al.  The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees , 2001, Trees.

[33]  I. Burgert,et al.  Evidence for the strength function of rays in living trees , 1999, Holz als Roh- und Werkstoff.

[34]  J. Fotsing,et al.  Size Effect of two Cameroonian Hardwoods in Compression and Bending Parallel to the Grain , 1995 .

[35]  Borg Madsen,et al.  Size effects occurring in defect-free spruce – pine – fir bending specimens , 1991 .

[36]  Borg Madsen,et al.  Size effects in defect-free Douglas fir , 1990 .

[37]  Andrew H. Buchanan,et al.  Size effects in timber explained by a modified weakest link theory , 1986 .

[38]  Thomas E. McLain,et al.  Quantitative wood anatomy-relating anatomy to transverse tensile strength , 2007 .

[39]  J. M. Dinwoodie,et al.  Timber—a review of the structure‐mechanical property relationship , 1975 .

[40]  E. Biblis Effect of thickness of microtome sections on their tensile properties. , 2007 .