Probabilistic averaging in kinetic theory for colloidal transport in porous media

[1]  Yalchin Efendiev,et al.  A Generalized Convection-Diffusion Model for Subgrid Transport in Porous Media , 2003, Multiscale Model. Simul..

[2]  Zhenjiang You,et al.  Estimating filtration coefficients for straining from percolation and random walk theories , 2012 .

[3]  Yalchin Efendiev,et al.  Numerical Homogenization of Monotone Elliptic Operators , 2003, Multiscale Model. Simul..

[4]  Peter C. Lichtner,et al.  On the upscaling of reaction-transport processes in porous media with fast or finite kinetics , 2002 .

[5]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[6]  Felipe Pereira,et al.  A multiscale direct solver for the approximation of flows in high contrast porous media , 2019, J. Comput. Appl. Math..

[7]  Z. You,et al.  Analytical model for straining-dominant large-retention depth filtration , 2017 .

[8]  Propagation behavior of permeability reduction in heterogeneous porous media due to particulate transport , 2016 .

[9]  Shuyu Sun,et al.  Discrete-fracture-model of multi-scale time-splitting two-phase flow including nanoparticles transport in fractured porous media , 2018, J. Comput. Appl. Math..

[10]  Peter Knabner,et al.  A coupled finite element-global random walk approach to advection-dominated transport in porous media with random hydraulic conductivity , 2013, J. Comput. Appl. Math..

[11]  Mukul M. Sharma,et al.  Transport of particulate suspensions in porous media: Model formulation , 1987 .

[12]  P. Bedrikovetsky,et al.  Explaining non-monotonic retention profiles during flow of size-distributed colloids , 2019, Chemical Engineering Journal.

[13]  Shuyu Sun,et al.  The transport of nanoparticles in subsurface with fractured, anisotropic porous media: Numerical simulations and parallelization , 2019, J. Comput. Appl. Math..

[14]  Peter Knabner,et al.  A Fokker-Planck approach for probability distributions of species concentrations transported in heterogeneous media , 2015, J. Comput. Appl. Math..

[15]  Pavel Bedrikovetsky,et al.  Upscaling of Stochastic Micro Model for Suspension Transport in Porous Media , 2008 .

[16]  O. Dinariev Nonlocal Hydrodynamics of a Relativistic Classical Collisionless Plasma , 2005 .

[17]  S. W. Cheung,et al.  Nonlocal multicontinua upscaling for multicontinua flow problems in fractured porous media , 2018, J. Comput. Appl. Math..

[18]  R. Sethi,et al.  Guar gum solutions for improved delivery of iron particles in porous media (part 2): iron transport tests and modeling in radial geometry. , 2014, Journal of contaminant hydrology.

[19]  O. Dinariev Transition from a kinetic to a nonlocal hydrodynamic description for a nonrelativistic gas , 1995 .

[20]  M. H. Hamdan,et al.  A dusty gas flow model in porous media , 1990 .

[21]  Eric T. Chung,et al.  Generalized Multiscale Finite Element method for multicontinua unsaturated flow problems in fractured porous media , 2019, J. Comput. Appl. Math..

[22]  A. Shapiro,et al.  A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[23]  P. Bedrikovetsky,et al.  Modified Particle Detachment Model for Colloidal Transport in Porous Media , 2011 .

[24]  A. Shapiro Elliptic equation for random walks. Application to transport in microporous media , 2007 .

[25]  Yalchin Efendiev,et al.  ANALYSIS OF VARIANCE-BASED MIXED MULTISCALE FINITE ELEMENT METHOD AND APPLICATIONS IN STOCHASTIC TWO-PHASE FLOWS , 2014 .

[26]  Yalchin Efendiev,et al.  Numerical Homogenization of Nonlinear Random Parabolic Operators , 2004, Multiscale Model. Simul..

[27]  J. Šimůnek,et al.  Equilibrium and kinetic models for colloid release under transient solution chemistry conditions. , 2014, Journal of contaminant hydrology.

[28]  P. Bedrikovetsky,et al.  Exact solutions for suspension-colloidal transport with multiple capture mechanisms , 2018, International Journal of Non-Linear Mechanics.

[29]  J. Herzig,et al.  Flow of Suspensions through Porous Media—Application to Deep Filtration , 1970 .

[30]  Daniel M. Tartakovsky,et al.  The method of distributions for dispersive transport in porous media with uncertain hydraulic properties , 2016 .

[31]  Aldo Fiori,et al.  Upscaling of flow in heterogeneous porous formations: Critical examination and issues of principle , 2013 .

[32]  Alexandre M. Tartakovsky,et al.  Dissipative particle dynamics model for colloid transport in porous media , 2013 .

[33]  B. Bai,et al.  Experimental investigation and modeling of particulate transportation and deposition in vertical and horizontal flows , 2015, Hydrogeology Journal.

[34]  Daniel M. Tartakovsky,et al.  Groundwater flow in heterogeneous composite aquifers , 2002 .

[35]  Hakima Bessaih,et al.  Stochastic homogenization of multicontinuum heterogeneous flows , 2020, J. Comput. Appl. Math..

[36]  B. Bai,et al.  The Penetration Processes of Red Mud Filtrate in a Porous Medium by Seepage , 2017, Transport in Porous Media.

[37]  A. Shapiro,et al.  Modeling non-Fickian transport and hyperexponential deposition for deep bed filtration , 2010 .

[38]  P. Bedrikovetsky,et al.  Exact Upscaling for Transport of Size‐Distributed Colloids , 2019, Water Resources Research.

[39]  J. Wesselingh,et al.  Gas transport in tight porous media Gas kinetic approach , 2008 .

[40]  C. Chrysikopoulos,et al.  Cotransport of Graphene Oxide Nanoparticles and Kaolinite Colloids in Porous Media , 2017, Transport in Porous Media.

[41]  Correction of basic equations for deep bed filtration with dispersion , 2006 .

[42]  Narendra N. Das,et al.  Characterization of effective saturated hydraulic conductivity in an agricultural field using Karhunen‐Loève expansion with the Markov chain Monte Carlo technique , 2010 .

[43]  Alberto Guadagnini,et al.  Uncertainty Quantification in Scale‐Dependent Models of Flow in Porous Media , 2017 .