Isochronicity conditions for some planar polynomial systems II
暂无分享,去创建一个
[1] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[2] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[3] A. Choudhury,et al. On isochronous cases of the Cherkas system and Jacobi's last multiplier , 2010 .
[4] Valery G. Romanovski,et al. Linearizability conditions of time-reversible cubic systems , 2010 .
[5] J. Strelcyn,et al. Isochronicity conditions for some planar polynomial systems , 2009, 1005.5048.
[6] Symplectic rectification and isochronous Hamiltonian systems , 2009 .
[7] Valery G. Romanovski,et al. The Center and Cyclicity Problems: A Computational Algebra Approach , 2009 .
[8] The Center and Cyclicity Problems , 2009 .
[9] Valery G. Romanovski,et al. Linearizability conditions of time-reversible quartic systems having homogeneous nonlinearities , 2008 .
[10] Linearization of analytic isochronous centers from a given commutator , 2008 .
[11] Valery G. Romanovski,et al. Isochronicity of analytic systems via Urabe's criterion , 2007 .
[12] A. Veselov,et al. A Remark on Rational Isochronous Potentials , 2004, math-ph/0409062.
[13] A. Chouikha. Monotonicity of the period function for some planar differential systems. Part II: Liénard and related systems , 2005 .
[14] A. Chouikha. Monotonicity of the period function for some planar differential systems. Part I: Conservative and quadratic systems , 2005 .
[15] Isochronous centers of Lienard type equations and applications , 2004, math/0410022.
[16] M. Sabatini. On the period function of x″+f(x)x′2+g(x)=0 , 2004 .
[17] Jaume Giné,et al. Isochronicity into a family of time-reversible cubic vector fields , 2001, Appl. Math. Comput..
[18] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[19] Marco Sabatini,et al. A survey of isochronous centers , 1999 .
[20] Pei Yu,et al. Symbolic computation of normal forms for semi-simple cases , 1999 .
[21] Isochronicity and commutation of polynomial vector fields , 1999 .
[22] Christiane Rousseau,et al. Linearization of Isochronous Centers , 1995 .
[23] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[24] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[25] R. Devaney. Reversible diffeomorphisms and flows , 1976 .
[26] M. Urabe. The potential force yielding a periodic motion whose period is an arbitrary continuous function of the amplitude of the velocity , 1962 .