The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review

Nanocrystalline materials with a grain size <100 nm have attracted significant attention over the past two decades. Various attempts have been made to prepare nanocrystalline stainless steel using various routes, along with the study of attendant corrosion properties. A nanocrystalline structure imparts an improvement in mechanical properties, coupled with distinct corrosion behaviour, not always leading to better corrosion resistance. This paper reviews the relevant works to date which have studied corrosion behaviour of nanocrystalline stainless steels, relating the performance to processing, along with attention given to mechanistic aspects which dictate corrosion of nanocrystalline stainless steel.

[1]  B. Elfström The effect of chloride ions on passive layers on stainless steels , 1980 .

[2]  D. Landolt,et al.  Passive films on stainless steels—chemistry, structure and growth , 2003 .

[3]  Heon-Young Ha,et al.  Role of nitrogen in the active–passive transition behavior of binary Fe–Cr alloy system , 2012 .

[4]  J. Cairney,et al.  Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour , 2012 .

[5]  V. Gouda,et al.  Effect of metallurgical variables on the corrosion fatigue behaviour of 304 stainless steel in sulphuric/chloride media , 1980 .

[6]  H. Fischmeister,et al.  The passivity of iron-chromium alloys , 1989 .

[7]  A. Iversen,et al.  Aqueous Corrosion of Stainless Steels , 2010 .

[8]  T. Langdon,et al.  ENHANCED DUCTILITY OF NANOCRYSTALLINE AND ULTRAFINE-GRAINED METALS , 2012 .

[9]  P. Pistorius,et al.  ASPECTS OF THE EFFECTS OF ELECTROLYTE COMPOSITION ON THE OCCURRENCE OF METASTABLE PITTING ON STAINLESS STEEL , 1994 .

[10]  A. Roos,et al.  Semi-Massive Nanocrystallised Composites: From the Process to Mechanical and Microstructural Investigations , 2013 .

[11]  Fu-hui Wang,et al.  Effects of nanocrystallization on the corrosion behavior of 309 stainless steel , 2006 .

[12]  Bernhard Elsener,et al.  The corrosion resistance of electroless deposited nano-crystalline Ni-P alloys , 2008 .

[13]  Fu-hui Wang,et al.  Influence of nanocrystallization on pitting corrosion behavior of an austenitic stainless steel by stochastic approach and in situ AFM analysis , 2010 .

[14]  R. Newman,et al.  Perforated Covers for Propagating Pits , 1998 .

[15]  Y. Li,et al.  Electrochemical Corrosion Behavior of Nanocrystalline Materials-a Review , 2010 .

[16]  Fu-hui Wang,et al.  Pitting corrosion of 304ss nanocrystalline thin film , 2013 .

[17]  H. Uhlig Structure and growth of thin films on metals exposed to oxygen , 1967 .

[18]  D. Landolt,et al.  The influence of minor alloying elements on the passivation behaviour of iron-chromium alloys in HCl , 1985 .

[19]  K. Osozawa The Effects of Nitrogen on the Passivity and the Pitting Corrosion of Stainless Steels , 1998 .

[20]  Joseph K. L. Lai,et al.  Recent developments in stainless steels , 2009 .

[21]  Prasan K. Samal,et al.  Powder Metallurgy Stainless Steels: Processing, Microstructures, and Properties , 2007 .

[22]  R. Gupta,et al.  Oxidation resistance of nanocrystalline vis-à-vis microcrystalline Fe-Cr alloys , 2009 .

[23]  P. Schmuki,et al.  Metastable Pitting and Semiconductive Properties of Passive Films , 1992 .

[24]  K. Wasa,et al.  Special features of thin compound films prepared by magnetron sputtering , 1979 .

[25]  G. Wranglén Pitting and sulphide inclusions in steel , 1974 .

[26]  Jian Lu,et al.  Surface Nanocrystallization by Surface Mechanical Attrition Treatment , 2008 .

[27]  I. Olefjord The passive state of stainless steels , 1980 .

[28]  G. Palumbo,et al.  On the contribution of triple junctions to the structure and properties of nanocrystalline materials , 1990 .

[29]  M. Hasegawa,et al.  Corrosion Behavior of Ultrafine Grained Austenitic Stainless Steel , 1984 .

[30]  Arijit Saha Podder,et al.  Applications of Stainless Steel in Automobile Industry , 2013 .

[31]  W. Ding,et al.  Corrosion characteristics of nanostructured layer on 316L stainless steel fabricated by cavitation-annealing , 2006 .

[32]  S. Fujimoto,et al.  Disorder and Structural Relaxation in Passive Films on Fe-Cr Alloys , 1995 .

[33]  J. Benjamin Dispersion strengthened superalloys by mechanical alloying , 1970, Metallurgical and Materials Transactions B.

[34]  F. P. Fehlner,et al.  Low-temperature oxidation , 1970 .

[35]  E. Cho,et al.  Photoelectrochemical analysis on the passive film formed on Fe-20Cr in pH 8.5 buffer solution , 2001 .

[36]  R. Newman,et al.  DISSOLUTION AND PASSIVATION KINETICS OF Fe-Cr-Ni ALLOYS DURING LOCALIZED CORROSION , 1983 .

[37]  N. Birbilis,et al.  The effect of chromate on the pitting susceptibility of AA7075-T651 studied using potentiostatic transients , 2014 .

[38]  Richard J. Chater,et al.  Why stainless steel corrodes , 2002, Nature.

[39]  M. Metikoš-huković,et al.  Semiconducting properties of passive films on AISI 304 and 316 stainless steels , 1993 .

[40]  R. Valiev,et al.  Microhardness measurements and the Hall-Petch relationship in an AlMg alloy with submicrometer grain size , 1996 .

[41]  A. Alfantazi,et al.  An electrochemical impedance spectroscopy and polarization study of nanocrystalline Co and Co–P alloy in 0.1 M H2SO4 solution , 2006 .

[42]  R. Würschum,et al.  Diffusion in Nanocrystalline Metals and Alloys—A Status Report , 2003 .

[43]  A. Alfantazi,et al.  Corrosion Behavior of Nanocrystalline Co and Co-P Alloys in a NaOH Solution , 2010 .

[44]  G. T. Burstein 2.02 – Passivity and Localized Corrosion* , 2010 .

[45]  K. Lu,et al.  The Future of Metals , 2010, Science.

[46]  H. Isaacs,et al.  Effects of molybdenum on the pitting of ferritic- and austenitic-stainless steels in bromide and chloride solutions , 2002 .

[47]  K. Sugimoto,et al.  The Role of Alloyed Molybdenum in Austenitic Stainless Steels in the Inhibition of Pitting in Neutral Halide Solutions , 1976 .

[48]  Huihui Dong S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys , 2010 .

[49]  R. K. Singh Raman,et al.  Fabrication and oxidation resistance of nanocrystalline Fe10Cr alloy , 2010 .

[50]  R. C. Newman,et al.  2001 W.R. Whitney Award Lecture: Understanding the Corrosion of Stainless Steel , 2001 .

[51]  Dongyang Li,et al.  Mechanical, electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel , 2003 .

[52]  N. Ōtsuka,et al.  Role of alloyed copper on corrosion resistance of austenitic stainless steel in H2S–Cl− environment , 2014 .

[53]  Heon-Young Ha,et al.  Synergistic effect of Ni and N on improvement of pitting corrosion resistance of high nitrogen stainless steels , 2014 .

[54]  T. Bai,et al.  Evaluation of stress corrosion cracking susceptibility of nanocrystallized stainless steel 304L welded joint by small punch test , 2013 .

[55]  T. Barbee,et al.  Microstructure of amorphous 304 stainless steel-carbon alloys synthesized by magnetron sputter deposition , 1979 .

[56]  Geoffrey I. N. Waterhouse,et al.  Composition changes around sulphide inclusions in stainless steels, and implications for the initiation of pitting corrosion , 2010 .

[57]  R. M. Fernández-Domene,et al.  Effect of alloying elements on the electronic properties of thin passive films formed on carbon steel, ferritic and austenitic stainless steels in a highly concentrated LiBr solution , 2014 .

[58]  I. Olefjord,et al.  QUANTITATIVE ESCA ANALYSIS OF THE PASSIVE STATE OF AN Fe - Cr ALLOY AND AN Fe - Cr-Mo ALLOY , 1983 .

[59]  Norio Sato,et al.  A theory for breakdown of anodic oxide films on metals , 1971 .

[60]  N. Birbilis,et al.  Metastable pitting characteristics of aluminium alloys measured using current transients during potentiostatic polarisation , 2012 .

[61]  N. Birbilis,et al.  Effect of Grain Size on Corrosion: A Review , 2010 .

[62]  M. Sun,et al.  The high-temperature oxidation of bulk nanocrystalline 304 stainless steel in air , 2013 .

[63]  H. Fischmeister,et al.  Passivschichten auf rostfreien Stählen: Eine Übersicht über oberflächenanalytische Ergebnisse , 1984 .

[64]  H. Gleiter Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today? , 2008 .

[65]  N. Birbilis,et al.  Oxidation Resistance of Nanocrystalline Alloys , 2012 .

[66]  C. Koch,et al.  Nanocrystalline materials – Current research and future directions , 2000 .

[67]  M. Barteri,et al.  Effects of grain size on the properties of a low nickel austenitic stainless steel , 2003 .

[68]  N. D. Tomashov Passivity and corrosion resistance of metal systems , 1964 .

[69]  Jian Lu,et al.  Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment , 2003 .

[70]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[71]  R. K. Singh Raman,et al.  Electrochemical characteristics of nano and microcrystalline Fe–Cr alloys , 2012, Journal of Materials Science.

[72]  N. Mott The theory of the formation of protective oxide films on metals.—III , 1947 .

[73]  KwangSup Eom,et al.  Observation of passive films on Fe–20Cr–xNi (x = 0, 10, 20 wt.%) alloys using TEM and Cs-corrected STEM–EELS , 2014 .

[74]  T. Langdon,et al.  Improvement of mechanical properties for Al alloys using equal-channel angular pressing , 2001 .

[75]  T. Hoar,et al.  Breakdown of Passivity of Stainless Steel by Halide Ions , 1967, Nature.

[76]  C. Koch,et al.  Synthesis of nanostructured materials by mechanical milling: problems and opportunities , 1997 .

[77]  A. Deschamps,et al.  Relating the Early Evolution of Microstructure with the Electrochemical Response and Mechanical Performance of a Cu-Rich and Cu-Lean 7xxx Aluminum Alloy , 2012 .

[78]  M. Urquidi-Macdonald,et al.  Theory of Steady‐State Passive Films , 1990 .

[79]  M. Lohrengel,et al.  Stability, reactivity and breakdown of passive films. Problems of recent and future research , 2000 .

[80]  M. Zhu,et al.  Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing , 2012 .

[81]  J. Castle,et al.  The initiation of pitting corrosion at MnS inclusions , 1993 .

[82]  D. G. Morris,et al.  Ductility of Nanostructured Materials , 1999 .

[83]  Ke Lu,et al.  Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept behind a New Approach , 2009 .

[84]  N. Tao,et al.  Grain growth and strain release in nanocrystalline copper , 2001 .

[85]  N. Sato An overview on the passivity of metals , 1990 .

[86]  B. S. Murty,et al.  Synthesis, characterization and mechanical behaviour of an in situ consolidated nanocrystalline FeCrNi alloy , 2011, Journal of Materials Science.

[87]  K. Mingard,et al.  Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure , 2011 .

[88]  C. Cao,et al.  The Pitting Corrosion Resistance of Microcrystalline Coatings of Sputtered 321 Stainless Steel , 1990 .

[89]  R. Newman,et al.  Metastable Pitting and the Critical Pitting Temperature , 1998 .

[90]  Narasi Sridhar,et al.  Understanding localized corrosion , 2008 .

[91]  R. Birringer,et al.  On the room-temperature grain growth in nanocrystalline copper , 1994 .

[92]  Tao Bai,et al.  Evaluation of stress corrosion cracking susceptibility of stainless steel 304L with surface nanocrystallization by small punch test , 2013 .

[93]  R. Davidson,et al.  Analysis of Passive Films on Stainless Steel by Cyclic Voltammetry and Auger Spectroscopy , 1985 .

[94]  Digby D. Macdonald,et al.  The history of the Point Defect Model for the passive state: A brief review of film growth aspects , 2011 .

[95]  R. Winston Revie,et al.  Uhlig's Corrosion Handbook , 2005 .

[96]  J. Weissmüller,et al.  Grain boundary segregation, stress and stretch : Effects on hydrogen absorption in nanocrystalline palladium , 2007 .

[97]  Omar Suliman Zaroog,et al.  Corrosion of Stainless Steels , 1979 .

[98]  A. U. Malik,et al.  The effect of dominant alloy additions on the corrosion behavior of some conventional and high alloy stainless steels in seawater , 1995 .

[99]  D. Macdonald The Point Defect Model for the Passive State , 1992 .

[100]  Y. Li,et al.  Passive film growth mechanism of nanocrystalline 304 stainless steel prepared by magnetron sputtering and deep rolling techniques , 2011 .

[101]  B. S. Murty,et al.  Effect of Nanocrystalline Structure on the Corrosion of a Fe20Cr Alloy , 2013, International Journal of Electrochemical Science.

[102]  C. Jahnes,et al.  Pitting of Sputtered Aluminum Alloy Thin Films , 1989 .

[103]  David E. Williams,et al.  Stochastic Models of Pitting Corrosion of Stainless Steels I . Modeling of the Initiation and Growth of Pits at Constant Potential , 1985 .

[104]  Denny A. Jones Principles and prevention of corrosion , 1991 .

[105]  L. Singhal,et al.  Corrosion behavior and passive film chemistry of 216L stainless steel in sulphuric acid , 2009 .

[106]  J. Weertman Retaining the Nano in Nanocrystalline Alloys , 2012, Science.

[107]  Digby D. Macdonald,et al.  Theoretical Analysis of the Effects of Alloying Elements on Distribution Functions of Passivity Breakdown , 1989 .

[108]  M. Belo,et al.  The electronic structure of passive films formed on stainless steels , 1995 .

[109]  T. P. Hoar,et al.  The production and breakdown of the passivity of metals , 1967 .

[110]  H. Uhlig,et al.  Critical Potentials for Pitting Corrosion of Ni, Cr‐Ni, Cr‐Fe, and Related Stainless Steels , 1968 .

[111]  G. Frankel,et al.  Metastable Pitting of Stainless Steel , 1987 .

[112]  David E. Williams,et al.  The nucleation, growth and stability of micropits in stainless steel , 1994 .

[113]  Yiming Jiang,et al.  Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel , 2009 .

[114]  Jillian F. Banfield,et al.  Enhanced adsorption of molecules on surfaces of nanocrystalline particles , 1999 .

[115]  J. Spruiell,et al.  Grain refinement of wrought austenitic stainless steels by rapid heating , 1974, Metallurgical and Materials Transactions B.

[116]  D. Blackwood,et al.  Real time pit initiation studies on stainless steels : The effect of sulphide inclusions , 2007 .

[117]  M. Laleh,et al.  Low-Temperature Nitriding of Nanocrystalline Stainless Steel and Its Effect on Improving Wear and Corrosion Resistance , 2013, Journal of Materials Engineering and Performance.

[118]  Uwe Erb,et al.  The effects of grain size and phosphorus on the corrosion of nanocrystalline Ni-P alloys , 1993 .

[119]  R. Scattergood,et al.  Grain-size stabilization in nanocrystalline FeZr alloys , 2008 .

[120]  Ronald O. Scattergood,et al.  Ultrahigh strength and high ductility of bulk nanocrystalline copper , 2005 .

[121]  R. Alkire,et al.  The Role of Inclusions on Initiation of Crevice Corrosion of Stainless Steel I . Experimental Studies , 1989 .

[122]  M. Zhu,et al.  Corrosion resistance of electrolessly deposited Ni-P and Ni-W-P alloys with various structures , 2004 .

[123]  Christopher V. Jahnes,et al.  On the Pitting Resistance of Sputter‐Deposited Aluminum Alloys , 1993 .

[124]  Min Ho Lee,et al.  Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel , 2013 .

[125]  K. Sieradzki,et al.  Validation of a Percolation Model for Passivation of Fe‐Cr Alloys: Two‐Dimensional Computer Simulations , 1990 .

[126]  A. Fattah‐alhosseini,et al.  The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM) , 2011 .

[127]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[128]  W. Nowak Microcrystalline/amorphous iron alloy films for corrosion-resistant coatings , 1976 .

[129]  C. Clayton,et al.  Synergism of alloying elements and pitting corrosion resistance of stainless steels , 1993 .

[130]  J. L. Hudson,et al.  Metastable Pitting of Aluminum and Criteria for the Transition to Stable Pit Growth , 1994 .

[131]  R. Newman,et al.  An experimental confirmation of the pitting potential model of galvele , 1988 .

[132]  R. Kelly,et al.  Passivity breakdown and pitting corrosion of binary alloys , 1991, Nature.

[133]  T. Langdon Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement , 2013 .

[134]  Qing-you Liu,et al.  Austenitization behaviors of X80 pipeline steel with high Nb and trace Ti treatment , 2009 .

[135]  G. T. Burstein,et al.  Effects of alloyed molybdenum on the kinetics of repassivation on austenitic stainless steels , 1984 .

[136]  A S Mikhailov,et al.  Sudden Onset of Pitting Corrosion on Stainless Steel as a Critical Phenomenon , 2004, Science.

[137]  R. Birringer,et al.  Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? , 1984 .

[138]  M. Enayati,et al.  Ball milling of stainless steel scrap chips to produce nanocrystalline powder , 2007 .

[139]  R. Birringer,et al.  Free energy of active atoms in grain boundaries of nanocrystalline copper, nickel and palladium , 1992 .

[140]  G. Fumagalli,et al.  The distribution of stainless steel breakdown potentials: experimental method and the effect of metallurgical conditions , 1992 .

[141]  M. Ryan,et al.  The Pitting Behavior of Iron‐Chromium Thin Film Alloys in Hydrochloric Acid , 1998 .

[142]  C. Clayton,et al.  On the Role of Cr in the Passivity of Stainless Steel , 1986 .

[143]  Measuring the interface stress of nanocrystalline iron , 2008 .

[144]  R. Alkire,et al.  Initiation of Corrosion Pits at Inclusions on 304 Stainless Steel , 1995 .

[145]  S. Tao,et al.  Tribological, mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition , 2006 .

[146]  N. Birbilis,et al.  Influence of Surface Mechanical Attrition Treatment Attrition Media on the Surface Contamination and Corrosion of Magnesium , 2013 .

[147]  Ying Li,et al.  The corrosion behavior of Fe-10Cr nanocrystalline coating , 2006 .

[148]  Z. Szklarska‐Śmiałowska,et al.  Localized Corrosion of Nanocrystalline 304 Type Stainless Steel Films , 1992 .

[149]  Ying Li,et al.  Pitting mechanism on an austenite stainless steel nanocrystalline coating investigated by electrochemical noise and in-situ AFM analysis , 2008 .

[150]  D. Macdonald Passivity–the key to our metals-based civilization , 1999 .

[151]  G. Burstein,et al.  The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels , 2001 .

[152]  R. Newman,et al.  Growth and Repassivation of Single Corrosion Pits in Stainless Steel , 1984 .

[153]  I. O. Wallinder,et al.  Release rates of chromium and nickel from 304 and 316 stainless steel during urban atmospheric exposure—a combined field and laboratory study , 2002 .

[154]  Fu-hui Wang,et al.  The Electrochemical Corrosion Behavior of Nanocrystalline 304 Stainless Steel Prepared by Magnetron Sputtering , 2012 .

[155]  K. Sieradzki,et al.  A Percolation Model for Passivation in Stainless Steels , 1986 .

[156]  Petrus Christiaan Pistorius,et al.  The nucleation and growth of corrosion pits on stainless steel , 1993 .

[157]  Fecht Intrinsic instability and entropy stabilization of grain boundaries. , 1990, Physical review letters.

[158]  C. Clayton,et al.  A Bipolar Model of the Passivity of Stainless Steel: The Role of Mo Addition , 1986 .

[159]  C. Koch,et al.  Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition , 1998 .

[160]  I. Olefjord,et al.  Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA , 1985 .

[161]  B. Bolle,et al.  In-depth quantitative analysis of the microstructures produced by Surface Mechanical Attrition Treatment (SMAT) , 2013 .

[162]  C. Koch,et al.  Grain growth behaviour and consolidation of ball-milled nanocrystalline Fe–10Cr alloy , 2008 .

[163]  H. Uhlig,et al.  PASSIVITY IN THE IRON-CHROMIUM BINARY ALLOYS , 1959 .

[164]  Leroy Gardner,et al.  The use of stainless steel in structures , 2005 .

[165]  David E. Williams,et al.  The initiation of pitting corrosion on austenitic stainless steel : on the role and importance of sulphide inclusions , 1992 .

[166]  Z. Zhang,et al.  Formation mechanism of nanostructures in austenitic stainless steel during equal channel angular pressing , 2007 .

[167]  G. Herbsleb Der Einfluß von Schwefeldioxid, Schwefelwasserstoff und Kohlenmonoxid auf die Lochkorrosion von austenitischen Chrom-Nickel-Stählen mit bis zu 4 Massen-% Molybdän in 1 M Natriumchlorid-Lösung , 1982 .

[168]  S. Arya,et al.  A Comparative Study of Semiconducting Behavior of Passive Film of High Nitrogen and Ni and Mn Free Stainless Steels in 3.5 wt. % NaCl , 2013 .

[169]  K. Asami,et al.  An XPS study of the passivity of a series of iron—chromium alloys in sulphuric acid*† , 1978 .

[170]  G. Frankel Pitting Corrosion of Metals A Review of the Critical Factors , 1998 .

[171]  N. Birbilis,et al.  Effect of Vacuum System Base Pressure on Corrosion Resistance of Sputtered Al Thin Films , 2013 .

[172]  W. E. White Observations of the influence of microstructure on corrosion of welded conventional and stainless steels , 1992 .

[173]  Paul G. Sanders,et al.  Elastic and tensile behavior of nanocrystalline copper and palladium , 1997 .

[174]  J. Lu,et al.  Nitriding Iron at Lower Temperatures , 2003, Science.

[175]  Y. Segui,et al.  The role of alloyed tungsten on the conductivity of stainless steel passive layers , 1986 .

[176]  R. Scattergood,et al.  Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection , 2011 .

[177]  G. Okamoto Passive film of 18-8 stainless steel structure and its function , 1973 .

[178]  R. Jargelius-Pettersson Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels , 1999 .

[179]  R. Latanision,et al.  Corrosion Resistance of Microcrystalline Stainless Steels , 1982 .

[180]  Jian Lu,et al.  Tensile properties of a nanocrystalline 316L austenitic stainless steel , 2005 .

[181]  C. Koch,et al.  Resistance of nanocrystalline vis-à-vis microcrystalline Fe–Cr alloys to environmental degradation and challenges to their synthesis , 2010 .

[182]  G. Frankel,et al.  Pitting Corrosion of Very Clean Type 304 Stainless Steel , 2014 .

[183]  C. Schuh,et al.  Design of Stable Nanocrystalline Alloys , 2012, Science.

[184]  N. D. Greene,et al.  A Critical Analysis of Pitting Corrosion , 1959 .

[185]  I. Olefjord,et al.  The influence of phosphate on repassivation of 304 stainless steel in neutral chloride solution , 1998 .

[186]  Guangqiang Li,et al.  Preparation of nanocrystalline 430L stainless steel by HEBM and SPS , 2008 .

[187]  Zhou-hua Jiang,et al.  Effect of Grain Size on Mechanical Properties of Nickel-Free High Nitrogen Austenitic Stainless Steel , 2009 .

[188]  G. Frankel,et al.  The growth of 2-D pits in thin film aluminum , 1990 .

[189]  Vivekanand Kain,et al.  Microstructural changes in AISI 304L stainless steel due to surface machining: Effect on its susceptibility to chloride stress corrosion cracking , 2010 .

[190]  R. Scattergood,et al.  Thermodynamic Stabilization of Grain Size in Nanocrystalline Metals , 2012 .

[191]  G. T. Burstein,et al.  Passivity and Localized Corrosion , 2010 .

[192]  R. Newman Protection potentials for pitting of stainless steel in neutral chloride solutions , 1983 .

[193]  J. Galvele,et al.  Effect of Molybdenum on the Pitting Potential of High Purity 18% Cr Ferritic Stainless Steels , 1978 .

[194]  J. Duchêne,et al.  R.F. and D.C. reactive sputtering for crystalline and amorphous VO2 thin film deposition , 1972 .

[195]  Jun Li,et al.  Effect of Cu addition on microstructure and mechanical properties of 15%Cr super martensitic stainless steel , 2012 .

[196]  C. Suryanarayana,et al.  Mechanical alloying and milling , 2004 .

[197]  M. O. Speidel,et al.  Corrosion resistance of super duplex stainless steels in chloride ion containing environments: Investigations by means of a new microelectrochemical method. I. Precipitation-free states , 2001 .

[198]  S. Subramanian,et al.  Studies on Nb Microalloying of 13Cr Super Martensitic Stainless Steel , 2012, Metallurgical and Materials Transactions A.

[199]  Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel , 2006 .

[200]  N. R. Baddoo,et al.  Stainless steel in construction: A review of research, applications, challenges and opportunities , 2008 .

[201]  D. Duquette,et al.  An Electrochemical Study of the Pit Initiation Resistance of Ferritic Stainless Steels , 1985 .

[202]  B. Murty,et al.  Novel materials synthesis by mechanical alloying/milling , 1998 .

[203]  T. Langdon,et al.  Review: Processing of metals by equal-channel angular pressing , 2001 .

[204]  N. Sato,et al.  Theoretical approach to corrosion resistivity of alloys , 1987 .

[205]  S. Fujimoto,et al.  Semiconductive behavior of passive films formed on pure Cr and Fe-Cr alloys in sulfuric acid solution , 2002 .

[206]  L. M. Kukreja,et al.  Enhancement of Corrosion Resistance of Type 304 Stainless Steel Through a Novel Thermo-mechanical Surface Treatment , 2013, Journal of Materials Engineering and Performance.

[207]  Nancy Baddoo 100 years of stainless steel: A review of structural applications and the development of design rules , 2013 .

[208]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[209]  K. Asami,et al.  An X-ray photo-electron spectroscopic study of the passivity of ferritic 19Cr stainless steels in 1 NHCl , 1979 .

[210]  M. Sun,et al.  The Enhanced Even and Pitting Corrosion Resistances of Bulk Nanocrystalline Steel in HCl Solution , 2012 .

[211]  G. Hinds,et al.  Impact of surface condition on sulphide stress corrosion cracking of 316L stainless steel. , 2013 .

[212]  Hong-Hua Ge,et al.  Semiconducting behavior of passive film formed on stainless steel in borate buffer solution containing sulfide , 2011 .

[213]  E. Ma,et al.  Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. , 2013, Nature materials.

[214]  T. Balusamy,et al.  Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel , 2010 .

[215]  E. Verwey Electrolytic conduction of a solid insulator at high fields The formation of the anodic oxide film on aluminium , 1935 .

[216]  B. Malki,et al.  Influence of the Alloying Elements on Pitting Corrosion of Stainless Steels : A Modeling Approach , 2008 .

[217]  David E. Williams,et al.  Metallurgy (communication arising): Stainless-steel corrosion and MnS inclusions , 2003, Nature.

[218]  Mariano Marcos,et al.  Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn–N duplex stainless steels , 2003 .

[219]  K. Sieradzki,et al.  Computer simulation of alloy passivation and activation , 1990 .

[220]  R. Valiev,et al.  Principles of equal-channel angular pressing as a processing tool for grain refinement , 2006 .

[221]  P. Schmuki From Bacon to barriers: a review on the passivity of metals and alloys , 2002 .

[222]  I. Belova,et al.  Diffusion in nanocrystalline materials , 2003 .

[223]  Jian Lu,et al.  Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment , 2004 .

[224]  W. Johnson,et al.  Nanocrystalline metals prepared by high-energy ball milling , 1990 .

[225]  Digby D. Macdonald,et al.  A Point Defect Model for Anodic Passive Films I . Film Growth Kinetics , 1981 .

[226]  W. Kim,et al.  Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing , 2002 .

[227]  G. Eklund Initiation of Pitting at Sulfide Inclusions in Stainless Steel , 1974 .

[228]  Fu-hui Wang,et al.  The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels , 2010 .

[229]  H. Engell,et al.  The anodic polarization curves of iron-nickel-chromium alloys , 1966 .

[230]  Chong-xiang Huang,et al.  Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing , 2006 .

[231]  Delphine Retraint,et al.  ENHANCED MECHANICAL BEHAVIOR OF A NANOCRYSTALLISED STAINLESS STEEL AND ITS THERMAL STABILITY , 2007 .

[232]  M. Eskandari,et al.  Investigation in the corrosion behaviour of bulk nanocrystalline 316L austenitic stainless steel in NaCl solution , 2012 .

[233]  B. Mahato,et al.  Formation of ultrafine grained microstructure in the austenitic stainless steel and its impact on tensile properties , 2011 .

[234]  Xian-Zong Wang,et al.  Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel , 2002 .

[235]  Petrus Christiaan Pistorius,et al.  Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate , 1992 .

[236]  Digby D. Macdonald,et al.  A Point Defect Model for Anodic Passive Films II . Chemical Breakdown and Pit Initiation , 1981 .

[237]  Ricardo M. Souto,et al.  Origins of pitting corrosion , 2004 .

[238]  Hirohisa Uchida,et al.  Progress in thin films of giant magnetostrictive alloys , 2002 .

[239]  D. Landolt,et al.  Passivation of Fe-Cr alloys studied with ICP-AES and EQCM , 2002 .