Semantic Parsing Using Dependency Rules

Sentiment analysis from unstructured natural language text has recently received considerable attention from the research community. In the frame of biologically inspired machine learning approaches, finding good feature sets is particularly challenging yet very important. In this chapter, we focus on this fundamental issue of the sentiment analysis task. Specifically, we employ concepts as features and present a concept extraction algorithm to extract semantic features that exploit semantic relationships between words in natural language text. Additional conceptual information of a concept is obtained using the ConceptNet ontology. Concepts extracted from text are sent as queries to ConceptNet to extract their semantics. Further, we select important concepts and eliminate redundant concepts using the Minimum Redundancy and Maximum Relevance feature selection technique. All selected concepts are then used to build a machine learning model that classifies a given document as positive or negative

[1]  Namita Mittal,et al.  Semantic Feature Clustering for Sentiment Analysis of English Reviews , 2014 .

[2]  Erik Cambria,et al.  Common Sense Knowledge Based Personality Recognition from Text , 2013, MICAI.

[3]  Michael L. Littman,et al.  Measuring praise and criticism: Inference of semantic orientation from association , 2003, TOIS.

[4]  Lawrence D. Fu,et al.  A comprehensive empirical comparison of modern supervised classification and feature selection methods for text categorization , 2014, J. Assoc. Inf. Sci. Technol..

[5]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[6]  Namita Mittal,et al.  Categorical Probability Proportion Difference (CPPD): A Feature Selection Method for Sentiment Classification , 2012 .

[7]  Hongliang Yu,et al.  A study of supervised term weighting scheme for sentiment analysis , 2014, Expert Syst. Appl..

[8]  Jugal K. Kalita,et al.  MIFS-ND: A mutual information-based feature selection method , 2014, Expert Syst. Appl..

[9]  Takashi Inui,et al.  Extracting Semantic Orientations of Phrases from Dictionary , 2007, NAACL.

[10]  Hsinchun Chen,et al.  A Lexicon-Enhanced Method for Sentiment Classification: An Experiment on Online Product Reviews , 2010, IEEE Intelligent Systems.

[11]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[12]  Hiroya Takamura,et al.  Sentiment Classification Using Word Sub-sequences and Dependency Sub-trees , 2005, PAKDD.

[13]  Andrea Esuli,et al.  Determining the semantic orientation of terms through gloss analysis , 2005, CIKM 2005.

[14]  Namita Mittal,et al.  Sentiment Classification using Rough Set based Hybrid Feature Selection , 2013, WASSA@NAACL-HLT.

[15]  Watanabe Hideo,et al.  Deeper Sentiment Analysis Using Machine Translation Technology , 2004, COLING.

[16]  Preslav Nakov,et al.  Language-Independent Sentiment Analysis Using Subjectivity and Positional Information , 2009, RANLP.

[17]  Efstathios Stamatatos,et al.  Syntactic N-grams as machine learning features for natural language processing , 2014, Expert Syst. Appl..

[18]  Seong Joon Yoo,et al.  Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews , 2012, Expert Syst. Appl..

[19]  Masaru Kitsuregawa,et al.  Building Lexicon for Sentiment Analysis from Massive Collection of HTML Documents , 2007, EMNLP.

[20]  S. Narayanamoorthy,et al.  The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem , 2015, Comput. Intell. Neurosci..

[21]  Hugo Liu,et al.  ConceptNet — A Practical Commonsense Reasoning Tool-Kit , 2004 .

[22]  Philip J. Stone,et al.  A computer approach to content analysis: studies using the General Inquirer system , 1963, AFIPS Spring Joint Computing Conference.

[23]  John Blitzer,et al.  Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification , 2007, ACL.

[24]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[25]  Alistair Kennedy,et al.  SENTIMENT CLASSIFICATION of MOVIE REVIEWS USING CONTEXTUAL VALENCE SHIFTERS , 2006, Comput. Intell..

[26]  Vitaly Klyuev,et al.  Thematically Reinforced Explicit Semantic Analysis , 2014, ArXiv.

[27]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[28]  Shlomo Argamon,et al.  Using appraisal groups for sentiment analysis , 2005, CIKM '05.

[29]  George Forman,et al.  An Extensive Empirical Study of Feature Selection Metrics for Text Classification , 2003, J. Mach. Learn. Res..

[30]  Fei Song,et al.  Feature Selection for Sentiment Analysis Based on Content and Syntax Models , 2011, Decis. Support Syst..

[31]  Jian Zhu,et al.  Sentiment classification using the theory of ANNs , 2010 .

[32]  Jonathon Read,et al.  Using Emoticons to Reduce Dependency in Machine Learning Techniques for Sentiment Classification , 2005, ACL.

[33]  Themis Palpanas,et al.  Survey on mining subjective data on the web , 2011, Data Mining and Knowledge Discovery.

[34]  Aoying Zhou,et al.  Assembling the Optimal Sentiment Classifiers , 2012, WISE.

[35]  Siddharth Patwardhan,et al.  Feature Subsumption for Opinion Analysis , 2006, EMNLP.

[36]  Chng Eng Siong,et al.  Modelling Public Sentiment in Twitter: Using Linguistic Patterns to Enhance Supervised Learning , 2015, CICLing.

[37]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[38]  Erik Cambria,et al.  Jumping NLP Curves: A Review of Natural Language Processing Research [Review Article] , 2014, IEEE Computational Intelligence Magazine.

[39]  Ian H. Witten,et al.  Chapter 15 – Embedded Machine Learning , 2011 .

[40]  Luis Alfonso Ureña López,et al.  Experiments with SVM to classify opinions in different domains , 2011, Expert Syst. Appl..

[41]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[42]  Chun Chen,et al.  Opinion Word Expansion and Target Extraction through Double Propagation , 2011, CL.

[43]  Namita Mittal,et al.  Sentiment classification of review documents using phrase patterns , 2013, 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[44]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[45]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[46]  Mike Thelwall,et al.  A Study of Information Retrieval Weighting Schemes for Sentiment Analysis , 2010, ACL.

[47]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[48]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Eric Brill,et al.  Reducing the human overhead in text categorization , 2006, KDD '06.

[50]  Takashi Inui,et al.  Latent Variable Models for Semantic Orientations of Phrases , 2006, EACL.

[51]  Takashi Inui,et al.  Extracting Semantic Orientations of Words using Spin Model , 2005, ACL.

[52]  Erik Cambria,et al.  SeNTU: Sentiment Analysis of Tweets by Combining a Rule-based Classifier with Supervised Learning , 2015, *SEMEVAL.

[53]  Iryna Gurevych,et al.  A Comparative Study of Feature Extraction Algorithms in Customer Reviews , 2008, 2008 IEEE International Conference on Semantic Computing.

[54]  Fei-Yue Wang,et al.  Sentiment analysis of Chinese documents: From sentence to document level , 2009 .

[55]  Kazutaka Shimada,et al.  Movie Review Classification Based on a Multiple Classifier , 2007, PACLIC.

[56]  Lan Wang,et al.  Sentiment Classification of Documents Based on Latent Semantic Analysis , 2011 .

[57]  Kentaro Inui,et al.  Dependency Tree-based Sentiment Classification using CRFs with Hidden Variables , 2010, NAACL.

[58]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[59]  Lin Dai,et al.  Improving Sentiment Classification Using Feature Highlighting and Feature Bagging , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[60]  Dai Quoc Nguyen,et al.  Sentiment Classification on Polarity Reviews: An Empirical Study Using Rating-based Features , 2014, WASSA@ACL.

[61]  Akshi Kumar,et al.  Sentiment Analysis: A Perspective on its Past, Present and Future , 2012 .

[62]  Efstathios Stamatatos,et al.  Syntactic Dependency-Based N-grams as Classification Features , 2012, MICAI.

[63]  Rui Xia,et al.  Ensemble of feature sets and classification algorithms for sentiment classification , 2011, Inf. Sci..

[64]  Timothy W. Finin,et al.  Delta TFIDF: An Improved Feature Space for Sentiment Analysis , 2009, ICWSM.

[65]  Erik Cambria,et al.  EmoSenticSpace: A novel framework for affective common-sense reasoning , 2014, Knowl. Based Syst..

[66]  Vasudeva Varma,et al.  Towards Enhanced Opinion Classification using NLP Techniques. , 2011 .

[67]  Khurshid Ahmad,et al.  Sentiment Polarity Identification in Financial News: A Cohesion-based Approach , 2007, ACL.

[68]  Xia Wang,et al.  Sentiment Classification through Combining Classifiers with Multiple Feature Sets , 2007, 2007 International Conference on Natural Language Processing and Knowledge Engineering.

[69]  Fei Song,et al.  Comparison of Feature Selection Methods for Sentiment Analysis , 2010, Canadian Conference on AI.

[70]  Erik Cambria,et al.  Sentic patterns: Dependency-based rules for concept-level sentiment analysis , 2014, Knowl. Based Syst..

[71]  Ellen Riloff,et al.  Creating Subjective and Objective Sentence Classifiers from Unannotated Texts , 2005, CICLing.

[72]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[73]  Kerstin Denecke,et al.  Using SentiWordNet for multilingual sentiment analysis , 2008, 2008 IEEE 24th International Conference on Data Engineering Workshop.

[74]  Alexander Gelbukh Computational Linguistics and Intelligent Text Processing : 14th International Conference, CICLing 2013, Samos, Greece, March 24-30, 2013, Proceedings, Part I , 2013 .

[75]  Namita Mittal,et al.  Concept-Level Sentiment Analysis with Dependency-Based Semantic Parsing: A Novel Approach , 2015, Cognitive Computation.

[76]  Erik Cambria,et al.  SenticNet 2: A Semantic and Affective Resource for Opinion Mining and Sentiment Analysis , 2012, FLAIRS.

[77]  Vincent Ng,et al.  Examining the Role of Linguistic Knowledge Sources in the Automatic Identification and Classification of Reviews , 2006, ACL.

[78]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[79]  Aoying Zhou,et al.  An information theoretic approach to sentiment polarity classification , 2012, WebQuality '12.

[80]  Pushpak Bhattacharyya,et al.  Incorporating Semantic Knowledge for Sentiment Analysis , 2008 .

[81]  Jin-Cheon Na,et al.  Phrase-Level Sentiment Polarity Classification Using Rule-Based Typed Dependencies and Additional Complex Phrases Consideration , 2012, Journal of Computer Science and Technology.

[82]  Alexander F. Gelbukh,et al.  Dependency-Based Semantic Parsing for Concept-Level Text Analysis , 2014, CICLing.

[83]  Jin Zhang,et al.  An empirical study of sentiment analysis for chinese documents , 2008, Expert Syst. Appl..

[84]  Jin-Cheon Na,et al.  Sentence-Level Sentiment Polarity Classification Using a Linguistic Approach , 2011, ICADL.

[85]  Rudy Prabowo,et al.  Sentiment analysis: A combined approach , 2009, J. Informetrics.

[86]  Dai Quoc Nguyen,et al.  A Two-Stage Classifier for Sentiment Analysis , 2013, IJCNLP.

[87]  Erik Cambria,et al.  Intention awareness: improving upon situation awareness in human-centric environments , 2013, Human-centric Computing and Information Sciences.

[88]  Nirmalie Wiratunga,et al.  Selecting Bi-Tags for Sentiment Analysis of Text , 2007, SGAI Conf..

[89]  Dipankar Das,et al.  Enhanced SenticNet with Affective Labels for Concept-Based Opinion Mining , 2013, IEEE Intelligent Systems.

[90]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[91]  Björn W. Schuller,et al.  New Avenues in Opinion Mining and Sentiment Analysis , 2013, IEEE Intelligent Systems.

[92]  Dipankar Das,et al.  Enriching SenticNet Polarity Scores through Semi-Supervised Fuzzy Clustering , 2012, 2012 IEEE 12th International Conference on Data Mining Workshops.

[93]  Nigel Collier,et al.  Sentiment Analysis using Support Vector Machines with Diverse Information Sources , 2004, EMNLP.

[94]  Robert J. Hilderman,et al.  Categorical Proportional Difference: A Feature Selection Method for Text Categorization , 2008, AusDM.

[95]  Christopher D. Manning,et al.  The Stanford Typed Dependencies Representation , 2008, CF+CDPE@COLING.

[96]  T. V. Prabhakar,et al.  Sentence Level Sentiment Analysis in the Presence of Conjuncts Using Linguistic Analysis , 2007, ECIR.

[97]  Patrick Paroubek,et al.  Text Representation Using Dependency Tree Subgraphs for Sentiment Analysis , 2011, DASFAA Workshops.

[98]  Deyu Li,et al.  A Feature Selection Method Based on Fisher's Discriminant Ratio for Text Sentiment Classification , 2009, WISM.

[99]  Erik Cambria,et al.  AffectiveSpace 2: Enabling Affective Intuition for Concept-Level Sentiment Analysis , 2015, AAAI.

[100]  Sotiris Kotsiantis,et al.  Text Classification Using Machine Learning Techniques , 2005 .

[101]  Qiang Ye,et al.  Sentiment classification of online reviews to travel destinations by supervised machine learning approaches , 2009, Expert Syst. Appl..

[102]  Hsinchun Chen,et al.  Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums , 2008, TOIS.

[103]  Padmini Srinivasan,et al.  Exploring Feature Definition and Selection for Sentiment Classifiers , 2011, ICWSM.

[104]  M. de Rijke,et al.  UvA-DARE ( Digital Academic Repository ) Using WordNet to measure semantic orientations of adjectives , 2004 .

[105]  Arno Scharl,et al.  Extracting and Grounding Contextualized Sentiment Lexicons , 2013, IEEE Intelligent Systems.

[106]  C. Osgood,et al.  The Measurement of Meaning , 1958 .

[107]  Lei Zhang,et al.  Identifying Noun Product Features that Imply Opinions , 2011, ACL.

[108]  Bruno Ohana,et al.  Sentiment Classification of Reviews Using SentiWordNet , 2009 .

[109]  Namita Mittal,et al.  Prominent feature extraction for review analysis: an empirical study , 2016, J. Exp. Theor. Artif. Intell..

[110]  Ahmed Abbasi Intelligent Feature Selection for Opinion Classification , 2010, IEEE Intell. Syst..

[111]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[112]  Namita Mittal,et al.  Machine Learning Approaches for Sentiment Analysis , 2014 .

[113]  Erik Cambria,et al.  Fusing audio, visual and textual clues for sentiment analysis from multimodal content , 2016, Neurocomputing.

[114]  Chen Gui,et al.  A Rule-Based Approach to Aspect Extraction from Product Reviews , 2014, SocialNLP@COLING.

[115]  Chih-Ping Wei,et al.  Understanding what concerns consumers: a semantic approach to product feature extraction from consumer reviews , 2010, Inf. Syst. E Bus. Manag..

[116]  Erik Cambria,et al.  A Common-Sense Based API for Concept-Level Sentiment Analysis , 2014 .

[117]  Erik Cambria,et al.  Merging SenticNet and WordNet-Affect emotion lists for sentiment analysis , 2012, 2012 IEEE 11th International Conference on Signal Processing.

[118]  Songbo Tan,et al.  A survey on sentiment detection of reviews , 2009, Expert Syst. Appl..

[119]  Namita Mittal,et al.  Sentiment Analysis Using Common-Sense and Context Information , 2015, Comput. Intell. Neurosci..

[120]  Michael Gamon,et al.  Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis , 2004, COLING.

[121]  Jin-Cheon Na,et al.  Sentiment analysis of movie reviews on discussion boards using a linguistic approach , 2009, CIKM 2009.

[122]  Franco Salvetti,et al.  Automatic Opinion Polarity Classification of Movie Reviews , 2004 .

[123]  Namita Mittal,et al.  Enhancing Sentiment Classification Performance Using Bi-Tagged Phrases , 2013, 2013 IEEE 13th International Conference on Data Mining Workshops.

[124]  Liviu P. Dinu,et al.  The Naive Bayes Classifier in Opinion Mining: In Search of the Best Feature Set , 2012, CICLing.

[125]  Subhabrata Mukherjee,et al.  Sentiment Aggregation using ConceptNet Ontology , 2013, IJCNLP.

[126]  João Francisco Valiati,et al.  Document-level sentiment classification: An empirical comparison between SVM and ANN , 2013, Expert Syst. Appl..

[127]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[128]  Bénédicte Goujon Text Mining for Opinion Target Detection , 2011, 2011 European Intelligence and Security Informatics Conference.

[129]  Ophir Frieder,et al.  Repeatable evaluation of search services in dynamic environments , 2007, TOIS.

[130]  Erik Cambria,et al.  The CLSA Model: A Novel Framework for Concept-Level Sentiment Analysis , 2015, CICLing.

[131]  Namita Mittal,et al.  Optimal Feature Selection for Sentiment Analysis , 2013, CICLing.

[132]  Huan Liu,et al.  Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..

[133]  Carolyn Penstein Rosé,et al.  Generalizing Dependency Features for Opinion Mining , 2009, ACL.

[134]  Denzil Correa,et al.  Generating Domain-Specific Ontology from Common-Sense Semantic Network for Target-Specific Sentiment Analysis , 2010 .

[135]  Vibhu O. Mittal,et al.  Comparative Experiments on Sentiment Classification for Online Product Reviews , 2006, AAAI.

[136]  Rui Xia,et al.  Exploring the Use of Word Relation Features for Sentiment Classification , 2010, COLING.

[137]  David M. Pennock,et al.  Mining the peanut gallery: opinion extraction and semantic classification of product reviews , 2003, WWW '03.