The Persistence of a Slow Manifold with Bifurcation
暂无分享,去创建一个
K. Uldall Kristiansen | P. Palmer | R. M. Roberts | K. U. Kristiansen | P. Palmer | P. Palmer | R. Roberts
[1] John D. Simon,et al. Physical chemistry : a molecular approach , 1997 .
[2] Cary,et al. Adiabatic-invariant change due to separatrix crossing. , 1986, Physical review. A, General physics.
[3] S. Jacobs,et al. Existence of a Slow Manifold in a Model System of Equations , 1991 .
[4] J. Tennyson,et al. Relative equilibria of D2H + and H2D+ , 2000 .
[5] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[6] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[7] Effects of nonadiabatic transitions on invariants of the motion , 1974 .
[8] J. Hannay. Accuracy loss of action invariance in adiabatic change of a one-freedom Hamiltonian , 1986 .
[9] Darryl D. Holm,et al. Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions , 2009 .
[10] Edward N. Lorenz,et al. The Slow Manifold—What Is It? , 1992 .
[11] K. Uldall Kristiansen,et al. A Unification of Models of Tethered Satellites , 2011, SIAM J. Appl. Dyn. Syst..
[12] V. Gelfreich,et al. Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system , 2002 .
[13] K. Uldall Kristiansen,et al. Relative motion of satellites exploiting the super-integrability of Kepler’s problem , 2010 .
[14] A. Neishtadt,et al. Stable periodic motions in the problem on passage through a separatrix. , 1997, Chaos.
[15] A. Neishtadt. On the accuracy of conservation of the adiabatic invariant , 1981 .
[16] Richard Haberman,et al. Slow Passage through a Saddle-Center Bifurcation , 2000, J. Nonlinear Sci..
[17] S. Reich,et al. Adiabatic Invariance and Applications: From Molecular Dynamics to Numerical Weather Prediction , 2004 .
[18] R. MacKay,et al. Energy localisation and transfer , 2004 .
[19] Anatoly Neishtadt,et al. On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom , 1987 .
[20] A. Neishtadt. The separation of motions in systems with rapidly rotating phase , 1984 .
[21] Richard Haberman,et al. Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in the adiabatic invariant , 2002 .
[22] Richard Haberman,et al. Slow Passage Through the Nonhyperbolic Homoclinic Orbit Associated with a Subcritical Pitchfork Bifurcation for Hamiltonian Systems and the Change in Action , 2001, SIAM J. Appl. Math..
[23] J. Henrard. The Adiabatic Invariant: Its Use in Celestial Mechanics , 1982 .
[24] Stephen Schecter,et al. Heteroclinic Orbits in Slow–Fast Hamiltonian Systems with Slow Manifold Bifurcations , 2010 .
[25] S. Chow,et al. A geometric proof of separatrix crossing results , 2004 .
[26] K. Uldall Kristiansen,et al. Numerical modelling of elastic space tethers , 2012 .
[27] P. Fife,et al. Existence of heteroclinic orbits for a corner layer problem in anisotropic interfaces , 2007, Advances in Differential Equations.
[28] R. Littlejohn,et al. Gauge fields in the separation of rotations and internal motions in the n-body problem , 1997 .
[29] J. Laskar,et al. Existence of collisional trajectories of Mercury, Mars and Venus with the Earth , 2009, Nature.
[30] P. Fife. A phase plane analysis of a corner layer problem arising in the study of crystalline grain boundaries , 2006 .
[31] A. Neishtadt,et al. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems , 2008 .
[32] D. Turaev,et al. The symmetric parabolic resonance , 2010 .
[33] J. Laskar. Large-scale chaos in the solar system. , 1994 .
[34] Inertial manifolds , 1990 .
[35] N. Rashevsky,et al. Mathematical biology , 1961, Connecticut medicine.