The Persistence of a Slow Manifold with Bifurcation

This paper considers the persistence of a slow manifold with bifurcation in a slow-fast two degree of freedom Hamiltonian system. In particular, we consider a system with a supercritical pitchfork bifurcation in the fast space which is unfolded by the slow coordinate. The model system is motivated by tethered satellites. It is shown that an almost full measure subset of a neighborhood of the slow manifold's normally elliptic branches persists in an adiabatic sense. We prove this using averaging and a blow-up near the bifurcation.

[1]  John D. Simon,et al.  Physical chemistry : a molecular approach , 1997 .

[2]  Cary,et al.  Adiabatic-invariant change due to separatrix crossing. , 1986, Physical review. A, General physics.

[3]  S. Jacobs,et al.  Existence of a Slow Manifold in a Model System of Equations , 1991 .

[4]  J. Tennyson,et al.  Relative equilibria of D2H + and H2D+ , 2000 .

[5]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[6]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[7]  Effects of nonadiabatic transitions on invariants of the motion , 1974 .

[8]  J. Hannay Accuracy loss of action invariance in adiabatic change of a one-freedom Hamiltonian , 1986 .

[9]  Darryl D. Holm,et al.  Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions , 2009 .

[10]  Edward N. Lorenz,et al.  The Slow Manifold—What Is It? , 1992 .

[11]  K. Uldall Kristiansen,et al.  A Unification of Models of Tethered Satellites , 2011, SIAM J. Appl. Dyn. Syst..

[12]  V. Gelfreich,et al.  Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system , 2002 .

[13]  K. Uldall Kristiansen,et al.  Relative motion of satellites exploiting the super-integrability of Kepler’s problem , 2010 .

[14]  A. Neishtadt,et al.  Stable periodic motions in the problem on passage through a separatrix. , 1997, Chaos.

[15]  A. Neishtadt On the accuracy of conservation of the adiabatic invariant , 1981 .

[16]  Richard Haberman,et al.  Slow Passage through a Saddle-Center Bifurcation , 2000, J. Nonlinear Sci..

[17]  S. Reich,et al.  Adiabatic Invariance and Applications: From Molecular Dynamics to Numerical Weather Prediction , 2004 .

[18]  R. MacKay,et al.  Energy localisation and transfer , 2004 .

[19]  Anatoly Neishtadt,et al.  On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom , 1987 .

[20]  A. Neishtadt The separation of motions in systems with rapidly rotating phase , 1984 .

[21]  Richard Haberman,et al.  Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in the adiabatic invariant , 2002 .

[22]  Richard Haberman,et al.  Slow Passage Through the Nonhyperbolic Homoclinic Orbit Associated with a Subcritical Pitchfork Bifurcation for Hamiltonian Systems and the Change in Action , 2001, SIAM J. Appl. Math..

[23]  J. Henrard The Adiabatic Invariant: Its Use in Celestial Mechanics , 1982 .

[24]  Stephen Schecter,et al.  Heteroclinic Orbits in Slow–Fast Hamiltonian Systems with Slow Manifold Bifurcations , 2010 .

[25]  S. Chow,et al.  A geometric proof of separatrix crossing results , 2004 .

[26]  K. Uldall Kristiansen,et al.  Numerical modelling of elastic space tethers , 2012 .

[27]  P. Fife,et al.  Existence of heteroclinic orbits for a corner layer problem in anisotropic interfaces , 2007, Advances in Differential Equations.

[28]  R. Littlejohn,et al.  Gauge fields in the separation of rotations and internal motions in the n-body problem , 1997 .

[29]  J. Laskar,et al.  Existence of collisional trajectories of Mercury, Mars and Venus with the Earth , 2009, Nature.

[30]  P. Fife A phase plane analysis of a corner layer problem arising in the study of crystalline grain boundaries , 2006 .

[31]  A. Neishtadt,et al.  Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems , 2008 .

[32]  D. Turaev,et al.  The symmetric parabolic resonance , 2010 .

[33]  J. Laskar Large-scale chaos in the solar system. , 1994 .

[34]  Inertial manifolds , 1990 .

[35]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.