Genotype and SNP calling from next-generation sequencing data

[1]  Si Quang Le,et al.  SNP detection and genotyping from low-coverage sequencing data on multiple diploid samples. , 2011, Genome research.

[2]  Martin Goodson,et al.  Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. , 2011, Genome research.

[3]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[4]  Huanming Yang,et al.  Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants , 2010, Nature Genetics.

[5]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[6]  Michael A. Schmidt,et al.  SeqEM: an adaptive genotype-calling approach for next-generation sequencing studies , 2010, Bioinform..

[7]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[8]  Asan,et al.  Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude , 2010, Science.

[9]  J. Marchini,et al.  Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.

[10]  Ruiqiang Li,et al.  Design of association studies with pooled or un‐pooled next‐generation sequencing data , 2010, Genetic epidemiology.

[11]  Héctor Corrada Bravo,et al.  Intensity normalization improves color calling in SOLiD sequencing , 2010, Nature Methods.

[12]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature Biotechnology.

[13]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[14]  Yun S. Song,et al.  naiveBayesCall: An Efficient Model-Based Base-Calling Algorithm for High-Throughput Sequencing , 2010, RECOMB.

[15]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature biotechnology.

[16]  Dawei Li,et al.  The sequence and de novo assembly of the giant panda genome , 2010, Nature.

[17]  P. Shannon,et al.  Exome sequencing identifies the cause of a Mendelian disorder , 2009, Nature Genetics.

[18]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[19]  Margaret A. Pericak-Vance,et al.  Exome Sequencing of a Multigenerational Human Pedigree , 2009, PloS one.

[20]  Chaolong Wang,et al.  The relationship between imputation error and statistical power in genetic association studies in diverse populations. , 2009, American journal of human genetics.

[21]  Paul Flicek,et al.  Sense from sequence reads: methods for alignment and assembly , 2009, Nature Methods.

[22]  Yun S. Song,et al.  BayesCall: A model-based base-calling algorithm for high-throughput short-read sequencing. , 2009, Genome research.

[23]  A. Zaranek,et al.  Multiplex padlock targeted sequencing reveals human hypermutable CpG variations. , 2009, Genome research.

[24]  Martin Kircher,et al.  Improved base calling for the Illumina Genome Analyzer using machine learning strategies , 2009, Genome Biology.

[25]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[26]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[27]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[28]  Huanming Yang,et al.  SNP detection for massively parallel whole-genome resequencing. , 2009, Genome research.

[29]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[30]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[31]  Robert P. Davey,et al.  Population genomics of domestic and wild yeasts , 2008, Nature.

[32]  Mark J. P. Chaisson,et al.  De novo fragment assembly with short mate-paired reads: Does the read length matter? , 2009, Genome research.

[33]  Timothy B. Stockwell,et al.  Evaluation of next generation sequencing platforms for population targeted sequencing studies , 2009, Genome Biology.

[34]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[35]  Dawei Li,et al.  The diploid genome sequence of an Asian individual , 2008, Nature.

[36]  R. Durbin,et al.  Mapping Quality Scores Mapping Short Dna Sequencing Reads and Calling Variants Using P

, 2022 .

[37]  Francisco M. De La Vega,et al.  Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals. , 2008, Genome research.

[38]  M. Gerstein,et al.  The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing , 2008, Science.

[39]  C. Nusbaum,et al.  ALLPATHS: de novo assembly of whole-genome shotgun microreads. , 2008, Genome research.

[40]  C. Nusbaum,et al.  Quality scores and SNP detection in sequencing-by-synthesis systems. , 2008, Genome research.

[41]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[42]  Gabor T. Marth,et al.  Pyrobayes: an improved base caller for SNP discovery in pyrosequences , 2008, Nature Methods.

[43]  Philip L. F. Johnson,et al.  Accounting for bias from sequencing error in population genetic estimates. , 2007, Molecular biology and evolution.

[44]  B. Browning,et al.  Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. , 2007, American journal of human genetics.

[45]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[46]  S. Batzoglou,et al.  Whole-Genome Sequencing and Assembly with High-Throughput, Short-Read Technologies , 2007, PloS one.

[47]  M. Stephens,et al.  Imputation-Based Analysis of Association Studies: Candidate Regions and Quantitative Traits , 2007, PLoS genetics.

[48]  Ingo Ruczinski,et al.  Imputation Methods to Improve Inference in Snp Association Studies , 2022 .

[49]  R. Durbin,et al.  Mapping trait loci by use of inferred ancestral recombination graphs. , 2006, American journal of human genetics.

[50]  Philip L. F. Johnson,et al.  Inference of population genetic parameters in metagenomics: a clean look at messy data. , 2006, Genome research.

[51]  Paul Scheet,et al.  A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. , 2006, American journal of human genetics.

[52]  D. Schaid,et al.  Score tests for association between traits and haplotypes when linkage phase is ambiguous. , 2002, American journal of human genetics.

[53]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[54]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[55]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[56]  D. J. Wheeler,et al.  A Block-sorting Lossless Data Compression Algorithm , 1994 .