Quantum dot made in metal oxide silicon-nanowire field effect transistor working at room temperature.

We report the observation of an atomic like behavior from T = 4.2 K up to room temperature in n- and p-type Ω-gate silicon nanowire (NW) transistors. For that purpose, we modified the design of a NW transistor and introduced long spacers between the source/drain and the channel in order to separate the channel from the electrodes. The channel was made extremely small (3.4 nm in diameter with 10 nm gate length) with a thick gate oxide (7 nm) in order to enhance the Coulomb repulsion between carriers, which can be as large as 200 meV when surface roughness promotes charge confinement. Parasitic stochastic Coulomb blockade effect can be eliminated in our devices by choosing proper control voltages. Moreover, the quantum dot can be tuned so that the resonant current at T = 4.2 K exceeds that at room temperature.

[1]  Maud Vinet,et al.  Few-electron edge-state quantum dots in a silicon nanowire field-effect transistor. , 2014, Nano letters.

[2]  D. Rideau,et al.  Quantum calculations of the carrier mobility: Methodology, Matthiessen's rule, and comparison with semi-classical approaches , 2013, 1310.1704.

[3]  B. De Salvo,et al.  300 K operating full-CMOS integrated Single Electron Transistor (SET)-FET circuits , 2012, 2012 International Electron Devices Meeting.

[4]  O. Faynot,et al.  Performance of Omega-Shaped-Gate Silicon Nanowire MOSFET With Diameter Down to 8 nm , 2012, IEEE Electron Device Letters.

[5]  Michelle Y. Simmons,et al.  Silicon quantum electronics , 2012, 1206.5202.

[6]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[7]  A. Orlov,et al.  Defect detection in nano-scale transistors based on radio-frequency reflectometry , 2011, 1109.4545.

[8]  P. Gentile,et al.  Joule-assisted silicidation for short-channel silicon nanowire devices. , 2011, ACS nano.

[9]  Yasuo Takahashi,et al.  Room-temperature charge stability modulated by quantum effects in a nanoscale silicon island. , 2011, Nano letters.

[10]  X. Jehl,et al.  Single-dopant resonance in a single-electron transistor , 2010, 1012.5544.

[11]  M. Lannoo,et al.  Influence of the interface-induced electron self-energy on the subthreshold characteristics of silicon gate-all-around nanowire transistors , 2010 .

[12]  Yasuo Takahashi,et al.  Si-based ultrasmall multiswitching single-electron transistor operating at room-temperature , 2010 .

[13]  X Jehl,et al.  Single-donor ionization energies in a nanoscale CMOS channel. , 2010, Nature nanotechnology.

[14]  S. Sarma,et al.  Quantum dot spin qubits in silicon: Multivalley physics , 2010, 1001.5040.

[15]  Charles M Lieber,et al.  Spin states of the first four holes in a silicon nanowire quantum dot. , 2008, Nano letters.

[16]  M. Fischetti,et al.  Modeling of Surface-Roughness Scattering in Ultrathin-Body SOI MOSFETs , 2007, IEEE Transactions on Electron Devices.

[17]  R. G. Wheeler,et al.  Observation of the linear stark effect in a single acceptor in Si. , 2007, Physical review letters.

[18]  G. Molas,et al.  Simple and controlled single electron transistor based on doping modulation in silicon nanowires , 2006, cond-mat/0609245.

[19]  D. Weinmann,et al.  Coulomb blockade without potential barriers , 2006, cond-mat/0602166.

[20]  Charles M. Lieber,et al.  Coherent single charge transport in molecular-scale silicon nanowires. , 2004, Nano letters.

[21]  T. Schimmel,et al.  Gate-controlled atomic quantum switch. , 2004, Physical review letters.

[22]  Masumi Saitoh,et al.  Extension of Coulomb blockade region by quantum confinement in the ultrasmall silicon dot in a single-hole transistor at room temperature , 2004 .

[23]  Frederic Boeuf,et al.  Controlled single-electron effects in nonoverlapped ultra-short silicon field effect transistors , 2003 .

[24]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[25]  J. Niemeyer,et al.  Single-electron transistor with metallic microstrips instead of tunnel junctions , 2001 .

[26]  J. Niemeyer,et al.  Metallic single-electron transistor without traditional tunnel barriers , 2000, cond-mat/0011427.

[27]  Y. Nazarov Coulomb Blockade without Tunnel Junctions , 1998, cond-mat/9808340.

[28]  Juan Carlos Cuevas,et al.  The signature of chemical valence in the electrical conduction through a single-atom contact , 1998, Nature.

[29]  Stephen Y. Chou,et al.  Silicon single-electron quantum-dot transistor switch operating at room temperature , 1998 .

[30]  Toshiro Hiramoto,et al.  Quantum mechanical effects in the silicon quantum dot in a single-electron transistor , 1997 .

[31]  Matveev,et al.  Coulomb blockade of activated conduction. , 1996, Physical review. B, Condensed matter.

[32]  Yasuo Takahashi,et al.  Fabrication technique for Si single-electron transistor operating at room temperature , 1995 .

[33]  Matveev Coulomb blockade at almost perfect transmission. , 1994, Physical review. B, Condensed matter.

[34]  Rusli,et al.  Room-Temperature Operation of Silicon Single-Electron Transistor Fabricated Using Optical Lithography , 2011, IEEE Transactions on Nanotechnology.