Isometric Energies for Recovering Injectivity in Constrained Mapping

Computing injective maps with low distortions is a long-standing problem in computer graphics. Such maps are particularly challenging to obtain in the presence of positional constraints, because an injective initial map is often not available. Recently, several energies were proposed and shown to be highly successful in optimizing injectivity from non-injective initial maps while satisfying positional constraints. However, minimizing these energies tends to produce elements with significant isometric distortions. This paper presents simple variants of these energies that retain their desirable traits while promoting isometry. While our method is not guaranteed to provide an injective map, we observe that, on large-scale 2D and 3D data sets, minimizing the proposed isometric variants results in a similar level of success in recovering injectivity as the original energies but a significantly lower isometric distortion.

[1]  Ligang Liu,et al.  Practical construction of globally injective parameterizations with positional constraints , 2023, Computational Visual Media.

[2]  Theodore Kim,et al.  Dynamic deformables: implementation and production practicalities (now with code!) , 2022, SIGGRAPH Courses.

[3]  D. Kaufman,et al.  Optimizing global injectivity for constrained parameterization , 2021, ACM Trans. Graph..

[4]  Keenan Crane,et al.  Discrete conformal equivalence of polyhedral surfaces , 2021, ACM Trans. Graph..

[5]  Keenan Crane,et al.  Discrete conformal equivalence of polyhedral surfaces , 2021, ACM Trans. Graph..

[6]  Dmitry Sokolov,et al.  Foldover-free maps in 50 lines of code , 2021, ACM Trans. Graph..

[7]  Noam Aigerman,et al.  Lifting simplices to find injectivity , 2020, ACM Trans. Graph..

[8]  Ligang Liu,et al.  Efficient bijective parameterizations , 2020, ACM Trans. Graph..

[9]  Yufeng Zhu,et al.  Adaptive Block Coordinate Descent for Distortion Optimization , 2020, Comput. Graph. Forum.

[10]  Jian-Ping Su,et al.  Practical Foldover‐Free Volumetric Mapping Construction , 2019, Comput. Graph. Forum.

[11]  Daniele Panozzo,et al.  Progressive embedding , 2019, ACM Trans. Graph..

[12]  Ofir Weber,et al.  A Subspace Method for Fast Locally Injective Harmonic Mapping , 2019, Comput. Graph. Forum.

[13]  Theodore Kim,et al.  Analytic Eigensystems for Isotropic Distortion Energies , 2019, ACM Trans. Graph..

[14]  Vladimir G. Kim,et al.  OptCuts: joint optimization of surface cuts and parameterization , 2019, ACM Trans. Graph..

[15]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[16]  Ligang Liu,et al.  Progressive parameterizations , 2018, ACM Trans. Graph..

[17]  Robert Bridson,et al.  Blended cured quasi-newton for distortion optimization , 2018, ACM Trans. Graph..

[18]  Daniele Panozzo,et al.  Simplicial complex augmentation framework for bijective maps , 2017, ACM Trans. Graph..

[19]  Scott Schaefer,et al.  Isometry‐Aware Preconditioning for Mesh Parameterization , 2017, Comput. Graph. Forum.

[20]  Olga Sorkine-Hornung,et al.  Geometric optimization via composite majorization , 2017, ACM Trans. Graph..

[21]  Doug L. James,et al.  Regularized kelvinlets , 2017, ACM Trans. Graph..

[22]  O. Sorkine-Hornung,et al.  Scalable Locally Injective Mappings , 2017, TOGS.

[23]  Yang Liu,et al.  Computing inversion-free mappings by simplex assembly , 2016, ACM Trans. Graph..

[24]  M. Campen,et al.  Bijective maps from simplicial foliations , 2016, ACM Trans. Graph..

[25]  Alec Jacobson,et al.  Thingi10K: A Dataset of 10, 000 3D-Printing Models , 2016, ArXiv.

[26]  Eftychios Sifakis,et al.  Fast and Robust Inversion‐Free Shape Manipulation , 2016, Comput. Graph. Forum.

[27]  Yaron Lipman,et al.  Orbifold Tutte embeddings , 2015, ACM Trans. Graph..

[28]  Ronen Basri,et al.  Large-scale bounded distortion mappings , 2015, ACM Trans. Graph..

[29]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[30]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[31]  Denis Zorin,et al.  Strict minimizers for geometric optimization , 2014, ACM Trans. Graph..

[32]  Denis Zorin,et al.  Locally injective parametrization with arbitrary fixed boundaries , 2014, ACM Trans. Graph..

[33]  Xianfeng Gu,et al.  A discrete uniformization theorem for polyhedral surfaces II , 2014, Journal of Differential Geometry.

[34]  Yaron Lipman,et al.  Bijective Mappings of Meshes with Boundary and the Degree in Mesh Processing , 2013, SIAM J. Imaging Sci..

[35]  Yaron Lipman,et al.  Injective and bounded distortion mappings in 3D , 2013, ACM Trans. Graph..

[36]  Denis Zorin,et al.  Controlled-distortion constrained global parametrization , 2013, ACM Trans. Graph..

[37]  Ligang Liu,et al.  Embedding a triangular graph within a given boundary , 2011, Comput. Aided Geom. Des..

[38]  P. Agarwal,et al.  Untangling triangulations through local explorations , 2008, SCG '08.

[39]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[40]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[41]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[42]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[43]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[44]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[45]  V. A. Garanzha,et al.  Regularization of the barrier variational method of grid generation , 1999 .

[46]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[47]  W. T. Tutte How to Draw a Graph , 1963 .

[48]  O. Sorkine-Hornung,et al.  Locally Injective Mappings , 2013, Eurographics Symposium on Geometry Processing.