Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer.

[1]  L. Tanoue Cancer Statistics, 2009 , 2010 .

[2]  M. Raimondo,et al.  CXC‐chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer , 2009, International journal of cancer.

[3]  A. Jemal,et al.  Cancer Statistics, 2009 , 2009, CA: a cancer journal for clinicians.

[4]  A. Sadanandam,et al.  CXCR1 and CXCR2 enhances human melanoma tumourigenesis, growth and invasion , 2009, British Journal of Cancer.

[5]  T. Gress,et al.  Pancreatic Intraepithelial Neoplasia Revisited and Updated , 2008, Pancreatology.

[6]  C. Rubie,et al.  Enhanced ENA-78 and IL-8 Expression in Patients with Malignant Pancreatic Diseases , 2008, Pancreatology.

[7]  Cornelis J H van de Velde,et al.  Disrupted Expression of CXCL5 in Colorectal Cancer Is Associated with Rapid Tumor Formation in Rats and Poor Prognosis in Patients , 2008, Clinical Cancer Research.

[8]  A. Jemal,et al.  Cancer Statistics, 2008 , 2008, CA: a cancer journal for clinicians.

[9]  A. Chinnaiyan,et al.  CXCL5 promotes prostate cancer progression. , 2008, Neoplasia.

[10]  S. Kopetz,et al.  Src family kinases as mediators of endothelial permeability: effects on inflammation and metastasis , 2008, Cell and Tissue Research.

[11]  A. Sadanandam,et al.  Chemokines in tumor angiogenesis and metastasis , 2007, Cancer and Metastasis Reviews.

[12]  Kyung Hwa Park,et al.  CXCL5 overexpression is associated with late stage gastric cancer , 2007, Journal of Cancer Research and Clinical Oncology.

[13]  Michael J. Birrer,et al.  Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling , 2007, Oncogene.

[14]  D. Beer,et al.  Diversity of the angiogenic phenotype in non-small cell lung cancer. , 2007, American journal of respiratory cell and molecular biology.

[15]  H. Friess,et al.  Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. , 2006, Cancer letters.

[16]  W. A. Yeudall,et al.  Down-regulation of CXCL5 inhibits squamous carcinogenesis. , 2006, Cancer research.

[17]  J. Penn,et al.  Src, Fyn and Yes play differential roles in VEGF-mediated endothelial cell events , 2006, Angiogenesis.

[18]  M. Burdick,et al.  CXC chemokines in angiogenesis , 2000, Journal of leukocyte biology.

[19]  N. Hay,et al.  Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo , 2005, Nature Medicine.

[20]  A. Dudley,et al.  A VEGF/JAK2/STAT5 axis may partially mediate endothelial cell tolerance to hypoxia. , 2005, The Biochemical journal.

[21]  Manish Gala,et al.  Induction of interleukin-8 preserves the angiogenic response in HIF-1α–deficient colon cancer cells , 2005, Nature Medicine.

[22]  M. Lotze,et al.  Interleukin-17 enhances bFGF-, HGF- and VEGF-induced growth of vascular endothelial cells. , 2005, Immunology letters.

[23]  B. Dave,et al.  Autocrine Role of Interleukin-8 in Induction of Endothelial Cell Proliferation, Survival, Migration and MMP-2 Production and Angiogenesis , 2005, Angiogenesis.

[24]  D. Harrison,et al.  The JAK/STAT signaling pathway , 2004, Journal of Cell Science.

[25]  K. Sayama,et al.  Nuclear Translocation of Phosphorylated STAT3 Is Essential for Vascular Endothelial Growth Factor-induced Human Dermal Microvascular Endothelial Cell Migration and Tube Formation* , 2003, Journal of Biological Chemistry.

[26]  D. Stupack,et al.  Role of Raf in Vascular Protection from Distinct Apoptotic Stimuli , 2003, Science.

[27]  K. Takaori,et al.  Clinicopathological features of pancreatic intraepithelial neoplasias and their relationship to intraductal papillary-mucinous tumors. , 2003, Journal of hepato-biliary-pancreatic surgery.

[28]  W. Murphy,et al.  The diverse role of chemokines in tumor progression: prospects for intervention (Review). , 2001, International journal of molecular medicine.

[29]  R H Hruban,et al.  Pancreatic Intraepithelial Neoplasia: A New Nomenclature and Classification System for Pancreatic Duct Lesions , 2001, The American journal of surgical pathology.

[30]  C. Martínez-A,et al.  Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. , 2001, Annual review of immunology.

[31]  M. Burdick,et al.  The CXC Chemokine Receptor 2, CXCR2, Is the Putative Receptor for ELR+ CXC Chemokine-Induced Angiogenic Activity1 , 2000, The Journal of Immunology.

[32]  A. Richmond,et al.  Delayed wound healing in CXCR2 knockout mice. , 2000, The Journal of investigative dermatology.

[33]  P. Schwartzberg,et al.  Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. , 1999, Molecular cell.

[34]  S. Yonezawa,et al.  Immunohistochemical analysis of pericryptal fibroblast sheath and proliferating epithelial cells in human colorectal adenomas and carcinomas with adenoma components , 1999, Pathology international.

[35]  W. Gong,et al.  Chemokines and their role in tumor growth and metastasis. , 1998, Journal of immunological methods.

[36]  M. Iannettoni,et al.  Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. , 1998, The Journal of clinical investigation.

[37]  C. Bucana,et al.  Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. , 1998, Journal of the National Cancer Institute.

[38]  L. Mazzucchelli,et al.  The C-X-C chemokine ENA-78 is preferentially expressed in intestinal epithelium in inflammatory bowel disease. , 1997, Gastroenterology.

[39]  G. Zimmerman,et al.  Human endothelial cells synthesize ENA-78: relationship to IL-8 and to signaling of PMN adhesion. , 1997, American journal of respiratory cell and molecular biology.

[40]  R. Strieter,et al.  Interferon‐α and interferon‐γ down‐regulate the production of interleukin‐8 and ENA‐78 in human monocytes , 1995, Journal of leukocyte biology.

[41]  M. Burdick,et al.  Epithelial neutrophil activating peptide-78: a novel chemotactic cytokine for neutrophils in arthritis. , 1994, The Journal of clinical investigation.

[42]  R. Strieter,et al.  Structure and neutrophil-activating properties of a novel inflammatory peptide (ENA-78) with homology to interleukin 8 , 1991, The Journal of experimental medicine.

[43]  J. Folkman,et al.  Relation of vascular proliferation to tumor growth. , 1976, International review of experimental pathology.