Bimodal ionic photomemristor based on a high-temperature oxide superconductor/semiconductor junction

[1]  J. Shainline,et al.  SuperMind: a survey of the potential of superconducting electronics for neuromorphic computing , 2022, Superconductor Science and Technology.

[2]  Ho Won Jang,et al.  Halide Perovskites for Memristive Data Storage and Artificial Synapses. , 2021, The journal of physical chemistry letters.

[3]  H. Hilgenkamp,et al.  Exploring the path of the variable resistance , 2021, Science.

[4]  Pengfei Yang,et al.  Optogenetics‐Inspired Neuromorphic Optoelectronic Synaptic Transistors with Optically Modulated Plasticity , 2021, Advanced Optical Materials.

[5]  Huan Tan,et al.  Non-volatile optical switch of resistance in photoferroelectric tunnel junctions , 2021, Nature communications.

[6]  Yong-Hoon Kim,et al.  Recent Progress of Optoelectronic and All‐Optical Neuromorphic Devices: A Comprehensive Review of Device Structures, Materials, and Applications , 2020, Adv. Intell. Syst..

[7]  Bhavin J. Shastri,et al.  Photonics for artificial intelligence and neuromorphic computing , 2020, Nature Photonics.

[8]  Gunuk Wang,et al.  Emerging Memristive Artificial Synapses and Neurons for Energy‐Efficient Neuromorphic Computing , 2020, Advanced materials.

[9]  H. Hilgenkamp Josephson Memories , 2020, Journal of Superconductivity and Novel Magnetism.

[10]  L. Chua,et al.  All‐Optically Controlled Memristor for Optoelectronic Neuromorphic Computing , 2020, Advanced Functional Materials.

[11]  M. Stiles,et al.  Neuromorphic spintronics , 2020, Nature Electronics.

[12]  Ru Huang,et al.  A comprehensive review on emerging artificial neuromorphic devices , 2020, Applied Physics Reviews.

[13]  K. Bouzehouane,et al.  Quasiparticle tunnel electroresistance in superconducting junctions , 2020, Nature Communications.

[14]  Xubing Lu,et al.  An Artificial Optoelectronic Synapse Based on a Photoelectric Memcapacitor , 2019, Advanced Electronic Materials.

[15]  S. Noda,et al.  Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process , 2019, Scientific Reports.

[16]  Shimeng Yu,et al.  Optoelectronic resistive random access memory for neuromorphic vision sensors , 2019, Nature Nanotechnology.

[17]  Juan Trastoy,et al.  Subthreshold firing in Mott nanodevices , 2019, Nature.

[18]  Wuhong Xue,et al.  An Oxide Schottky Junction Artificial Optoelectronic Synapse. , 2019, ACS nano.

[19]  M. Alexe,et al.  Light-Controlled Nanoscopic Writing of Electronic Memories Using the Tip-Enhanced Bulk Photovoltaic Effect. , 2019, ACS applied materials & interfaces.

[20]  H.-S. Philip Wong,et al.  In-memory computing with resistive switching devices , 2018, Nature Electronics.

[21]  Lin Gan,et al.  Photonic Potentiation and Electric Habituation in Ultrathin Memristive Synapses Based on Monolayer MoS2. , 2018, Small.

[22]  Michael L. Schneider,et al.  Ultralow power artificial synapses using nanotextured magnetic Josephson junctions , 2018, Science Advances.

[23]  Rajubhai K. Mewada,et al.  Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review , 2017 .

[24]  T. Puig,et al.  Untangling surface oxygen exchange effects in YBa2Cu3O6+x thin films by electrical conductivity relaxation. , 2017, Physical chemistry chemical physics : PCCP.

[25]  X. Liu,et al.  Photovoltaic effect in YBa2Cu3O7−δ/Nb-doped SrTiO3 heterojunctions , 2016 .

[26]  J. Lesueur,et al.  High-Tc superconducting quantum interference filters (SQIFs) made by ion irradiation , 2016, 1603.07592.

[27]  Chuong Huynh,et al.  Nano Josephson superconducting tunnel junctions in YBa2Cu3O(7-δ) directly patterned with a focused helium ion beam. , 2015, Nature nanotechnology.

[28]  A. Kalabukhov,et al.  Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa2Cu3O6.9 , 2014, Scientific Reports.

[29]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[30]  A. Kreisler,et al.  Low temperature amorphous growth of semiconducting Y–Ba–Cu–O oxide thin films in view of infrared bolometric detection , 2012 .

[31]  Vincent Garcia,et al.  Ferroelectric and multiferroic tunnel junctions , 2012 .

[32]  J. Grollier,et al.  Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities , 2011, 1102.2106.

[33]  Pascal Febvre,et al.  European roadmap on superconductive electronics – status and perspectives☆ , 2010 .

[34]  T. Grande,et al.  Electronic structure of multiferroic BiFeO 3 and related compounds: Electron energy loss spectroscopy and density functional study , 2010 .

[35]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[36]  Ho Won Jang,et al.  Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. , 2009, Nano letters.

[37]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[38]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[39]  Hermann Kohlstedt,et al.  Tunneling Across a Ferroelectric , 2006, Science.

[40]  J. Tarascon,et al.  High resolution EELS of Cu-V oxides: application to batteries materials. , 2006, Micron.

[41]  O. Mielke,et al.  Flip-Flopping Fractional Flux Quanta , 2006, Science.

[42]  T. Claeson,et al.  Quantum Dynamics of a d-Wave Josephson Junction , 2006, Science.

[43]  A. Fert,et al.  Switching a spin valve back and forth by current-induced domain wall motion , 2003, cond-mat/0304312.

[44]  Z. Szotek,et al.  Cu valency change induced by O doping in YBCPO. , 2001, Physical review letters.

[45]  Ivan K. Schuller,et al.  Reliability of normal-state current–voltage characteristics as an indicator of tunnel-junction barrier quality , 2000 .

[46]  G Indiveri,et al.  Neuromorphic Vision Sensors , 2000, Science.

[47]  Alberto Piqué,et al.  Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices , 1999 .

[48]  P. Seidel,et al.  Influence of bias voltage history on conductance properties of YBaCuO/normal metal junctions , 1998 .

[49]  V. I. Kudinov Mechanisms for the persistent photoconductivity of oxygen deficient YBa2Cu3O6+x , 1994 .

[50]  Uchida,et al.  Systematic deviation from T-linear behavior in the in-plane resistivity of YBa2Cu3O7-y: Evidence for dominant spin scattering. , 1993, Physical review letters.

[51]  W. Brinkman,et al.  Tunneling Conductance of Asymmetrical Barriers , 1970 .

[52]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[53]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[54]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .