The hyperbolic wavelet transform: an efficient tool for multifractal analysis of anisotropic fields

Global and local regularity of functions in anisotropic function spaces is analyzed in the common framework provided by hyperbolic wavelet bases. Local and directional regularity features are characterized by means of global quantities derived from the coefficients of hyperbolic wavelet decompositions. A multifractal analysis is introduced, that jointly accounts for scale invariance and anisotropy, and its properties are investigated.

[1]  A. Calderón,et al.  Parabolic maximal functions associated with a distribution, II , 1977 .

[2]  W. Marsden I and J , 2012 .

[3]  François Roueff,et al.  Local and Asymptotic Properties of Linear Fractional Stable Sheets , 2007 .

[4]  Demetrio Labate,et al.  Representation of Fourier Integral Operators Using Shearlets , 2008 .

[5]  R. Hochmuth N–Term Approximation in Anisotropic Function Spaces , 2002 .

[6]  M. Clausel,et al.  An optimality result about sample path properties of Operator Scaling Gaussian Random Fields , 2013, 1302.0818.

[7]  Laurent Jacques,et al.  A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity , 2011, Signal Process..

[8]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[9]  Winfried Sickel,et al.  Spaces of functions of mixed smoothness and approximation from hyperbolic crosses , 2004, J. Approx. Theory.

[10]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[11]  H. Triebel Theory of Function Spaces III , 2008 .

[12]  Jouni Sampo,et al.  Estimations of Hölder Regularities and Direction of Singularity by Hart Smith and Curvelet Transforms , 2009 .

[13]  Winfried Sickel,et al.  Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross , 2009, J. Approx. Theory.

[14]  R. Hochmuth Wavelet Characterizations for Anisotropic Besov Spaces , 2002 .

[15]  Dorothee D. Haroske,et al.  Function spaces, differential operators and nonlinear analysis , 1993 .

[16]  Mark M. Meerschaert,et al.  Operator scaling stable random fields , 2006 .

[17]  Hart F. Smith A Hardy space for Fourier integral operators , 1998 .

[18]  G. Garrigós,et al.  Wavelet decompositions of anisotropic Besov spaces , 2002 .

[19]  Michael H. Neumann MULTIVARIATE WAVELET THRESHOLDING IN ANISOTROPIC FUNCTION SPACES , 2000 .

[20]  Peter Hall,et al.  Fractal analysis of surface roughness by using spatial data , 1999 .

[21]  Marcin Bownik Atomic and molecular decompositions of anisotropic Besov spaces , 2005 .

[22]  R. DeVore,et al.  Hyperbolic Wavelet Approximation , 1998 .

[23]  Rainer von Sachs,et al.  Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra , 1997 .

[24]  Demetrio Labate,et al.  Analysis and detection of surface discontinuities using the 3D continuous shearlet transform , 2011 .

[25]  Elias M. Stein,et al.  Hardy spaces on homogeneous groups , 1982 .

[26]  M. B. Slimane,et al.  Directional and Anisotropic Regularity and Irregularity Criteria in Triebel Wavelet Bases , 2012 .

[27]  M. B. Slimane Multifractal formalism and anisotropic selfsimilar functions , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  Harold Auradou,et al.  Anisotropic self-affine properties of experimental fracture surfaces , 2006 .

[29]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[30]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[31]  S. Jaffard Pointwise and directional regularity of nonharmonic Fourier series , 2010 .

[32]  G. Beylkin Wavelets and Fast Numerical Algorithms , 1993, comp-gas/9304004.

[33]  John W. Woods,et al.  Subband coding of images , 1986, IEEE Trans. Acoust. Speech Signal Process..

[34]  H. Aimar,et al.  Parabolic Besov Regularity for the Heat Equation , 2012 .

[35]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[36]  H. Triebel,et al.  Equivalent norms and Schauder bases in anisotropic Besov spaces , 1979, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[37]  Anne Estrade,et al.  Anisotropic Analysis of Some Gaussian Models , 2003 .

[38]  S. Jaffard,et al.  Irregularities and Scaling in Signal and Image Processing: Multifractal Analysis , 2012, 1210.0482.

[39]  Franccois Roueff,et al.  Linear fractional stable sheets: Wavelet expansion and sample path properties , 2008, 0806.1725.

[40]  H. Triebel Theory Of Function Spaces , 1983 .

[41]  Patrice Abry,et al.  Self-Similar Anisotropic Texture Analysis: The Hyperbolic Wavelet Transform Contribution , 2013, IEEE Transactions on Image Processing.

[42]  Michael Frazier,et al.  Decomposition of Besov Spaces , 2009 .

[43]  D. Haroske,et al.  Wavelet Frames for Distributions in Anisotropic Besov Spaces , 2005 .

[44]  S. Jaffard Wavelet Techniques in Multifractal Analysis , 2004 .

[45]  T. Tao,et al.  A bilinear approach to cone multipliers I. Restriction estimates , 2000 .

[46]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[47]  Antoine Ayache,et al.  Hausdorff dimension of the graph of the Fractional Brownian Sheet , 2004 .