Insulin downregulates the expression of the Ca2+-activated nonselective cation channel TRPM5 in pancreatic islets from leptin-deficient mouse models

[1]  E. Van Obberghen,et al.  MicroRNAs and metabolism crosstalk in energy homeostasis. , 2013, Cell metabolism.

[2]  A. Harris,et al.  Transcriptional networks driving enhancer function in the CFTR gene. , 2012, The Biochemical journal.

[3]  L. Marroqui,et al.  REVIEW Role of leptin in the pancreatic b -cell: effects and signaling pathways , 2012 .

[4]  Howard Slomko,et al.  Minireview: Epigenetics of obesity and diabetes in humans. , 2012, Endocrinology.

[5]  Christopher J. Ott,et al.  Nucleosome occupancy reveals regulatory elements of the CFTR promoter , 2011, Nucleic acids research.

[6]  P. Bougnères,et al.  T2DM: Why Epigenetics? , 2011, Journal of nutrition and metabolism.

[7]  J. Holst,et al.  Genetic variation within the TRPM5 locus associates with prediabetic phenotypes in subjects at increased risk for type 2 diabetes. , 2011, Metabolism: clinical and experimental.

[8]  R. Vennekens,et al.  Transient receptor potential cation channels in pancreatic β cells. , 2011, Reviews of physiology, biochemistry and pharmacology.

[9]  B. Nilius,et al.  The role of transient receptor potential cation channels in Ca2+ signaling. , 2010, Cold Spring Harbor perspectives in biology.

[10]  R. Penner,et al.  TRPM5 regulates glucose-stimulated insulin secretion , 2010, Pflügers Archiv - European Journal of Physiology.

[11]  K. Lemaire,et al.  Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5−/− mice , 2010, Proceedings of the National Academy of Sciences.

[12]  Bernd Nilius,et al.  Transient receptor potential channelopathies , 2010, Pflügers Archiv - European Journal of Physiology.

[13]  L. Groop,et al.  Epigenetics: A Molecular Link Between Environmental Factors and Type 2 Diabetes , 2009, Diabetes.

[14]  D. Pipeleers,et al.  Glucose, regulator of survival and phenotype of pancreatic beta cells. , 2009, Vitamins and hormones.

[15]  M. Horowitz,et al.  Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes , 2008, Gut.

[16]  S. Arora Leptin and its metabolic interactions – an update , 2008, Diabetes, obesity & metabolism.

[17]  Per-Olof Berggren,et al.  Insulin signaling in the pancreatic beta-cell. , 2008, Annual review of nutrition.

[18]  P. Lindström The Physiology of Obese-Hyperglycemic Mice [ob/ob Mice] , 2007, TheScientificWorldJournal.

[19]  J. A. Peters,et al.  Transient receptor potential cation channels in disease. , 2007, Physiological reviews.

[20]  I. Haznedaroglu,et al.  Rethinking leptin and insulin action: therapeutic opportunities for diabetes. , 2006, The international journal of biochemistry & cell biology.

[21]  B. Nilius,et al.  TRP channels: an overview. , 2005, Cell calcium.

[22]  F. Ashcroft,et al.  Type 2 diabetes mellitus: not quite exciting enough? , 2004, Human molecular genetics.

[23]  J. Seufert,et al.  Leptin Effects on Pancreatic β-Cell Gene Expression and Function , 2004 .

[24]  D. Coleman Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice , 1978, Diabetologia.

[25]  J. Seufert Leptin effects on pancreatic beta-cell gene expression and function. , 2004, Diabetes.

[26]  R. Penner,et al.  TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Gudermann,et al.  TRPM5 Is a Voltage-Modulated and Ca2+-Activated Monovalent Selective Cation Channel , 2003, Current Biology.

[28]  P. Berggren,et al.  Insulin feedback action on pancreatic β‐cell function , 2002 .

[29]  M. Ravier,et al.  Disorganization of cytoplasmic Ca2+ oscillations and pulsatile insulin secretion in islets from ob/ob mice , 2002, Diabetologia.

[30]  P. Berggren,et al.  Insulin feedback action on pancreatic beta-cell function. , 2002, FEBS letters.

[31]  M. Ravier,et al.  Disorganization of cytoplasmic Ca(2+) oscillations and pulsatile insulin secretion in islets from ob/ obmice. , 2002, Diabetologia.

[32]  N. Pørksen,et al.  The in vivo regulation of pulsatile insulin secretion , 2002, Diabetologia.

[33]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[34]  L. Satin,et al.  Insulin activates ATP-sensitive K(+) channels in pancreatic beta-cells through a phosphatidylinositol 3-kinase-dependent pathway. , 2001, Diabetes.

[35]  C. Kahn,et al.  Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. , 2001, Molecular cell.

[36]  J. Habener,et al.  Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  L. Tartaglia,et al.  Evidence That the Diabetes Gene Encodes the Leptin Receptor: Identification of a Mutation in the Leptin Receptor Gene in db/db Mice , 1996, Cell.

[38]  M. Pelleymounter,et al.  Effects of the obese gene product on body weight regulation in ob/ob mice. , 1995, Science.

[39]  A. Kuznetsov,et al.  Defective glucose-dependent endoplasmic reticulum Ca2+ sequestration in diabetic mouse islets of Langerhans. , 1994, The Journal of biological chemistry.

[40]  J. Castaño Regulation of gene expression by insulin. , 1991, Advances in enzyme regulation.

[41]  S. O’Rahilly,et al.  Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. , 1988, The New England journal of medicine.